【学习笔记】Multi-Objective Differential Evolution Algorithm --MODEA

【学习笔记】Multi-Objective Differential Evolution Algorithm --MODEA

正文

差分进化算法在处理多目标问题(MOP)会遇到很多问题。例如:如何生成新的点,从而更快地收敛到最优帕累托前沿,以及如何替换这些点,以获得尽可能多样的解集?
**MODEA算法是对MDE算法(一种解决单目标问题优化的算法)的扩展。**在MODEA算法中,从算法开始就注意保持种群的多样性和产生潜在的候选解。除了使用反向学习机制生成潜在的初始点,我们还在变异阶段使用了锦标赛最佳过程(或随机定位过程),以防止搜索变成纯随机搜索或纯贪婪搜索。

(一)算法关键点

  1. Opposition Based-Learning(反向学习机制)
  2. Randomized localization(随机定位)
  3. 引入新的选择机制----为了产生良好的pareto Font(帕累托前沿)

(二).概念定义

1.Opposition Based-Learning(反向学习机制)
反向学习机制(OBL)背后的主要思想是同时考虑一个估计及其相应的相反估计(即猜测和相反猜测),以便获取更好的当前候选解。
假设X = (x1,x2,…xn)是n维空间中的一个点,x1,x2,...xn

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值