- 博客(9)
- 资源 (1)
- 收藏
- 关注
原创 Redis面试高频
在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。在 Redis 的主从架构中,由于主从模式是读写分离的,如果主节点(master)挂了,那么将没有主节点来服务客户端的写操作请求,也没有主节点给从节点(slave)进行数据同步了。Redis 的快照是。
2022-10-20 17:20:08 338 1
原创 【学习笔记】基于分解的多目标进化算法中带Bandits的自适应算子选择——MOEA/D-FRRMAB
【学习笔记】基于分解的多目标进化算法中带Bandits的自适应算子选择——MOEA/D-FRRMAB算法概述相关知识FRRMAB——算法框架信誉分配算子选择MOEA/D-FRRMAB算法伪代码算法概述算法提出初衷: 在进化算法(EA)中,算法的性能很大程度的取决于参数的设置,而操作算子也可以视为EA中的一个参数。自适应算子选择(AOS)用于根据不同算子在优化过程中的近期表现,在线确定其应用率。一般来说,在单目标进化算法中,经常用到AOS操作,因为在大多数基于Pareto优势的多目标进化算法中,很难定量地
2021-10-21 16:48:34 1074
原创 【学习笔记】基于分解的多目标进化算法中两种归一化方法的同时使用---MOEA/D-2N
【学习笔记】基于分解的多目标进化算法中两种归一化方法的同时使用---MOEA/D-2N算法简介对比算法:MOEA/D、MOEA/D-N算法简介Q:在实际应用中,每个目标的数量级是不同的,对于目标数量级不同的问题,常采用归一化操作来对每个目标引起同等的重视。目标空间归一化对每种算法的性能(即每种算法对现实问题的实际适用性)有很大的影响。A:本文在MOEA/D的基础上,采取两种归一化操作,来弥补MOEA/D中归一化操作带来的性能下降。对比算法:MOEA/D、MOEA/D-N...
2021-01-14 16:33:47 3351 2
原创 【学习笔记】基于参考点的非支配排序--NSGA-III
【学习笔记】基于参考点的非支配排序--NSGA-III简介问题详述关于多目标问题的两个想法NSGA-III算法简介Q:进化多目标优化(EMO)方法在寻找不同的两目标和三目标优化问题的一组良好收敛和良好多样化的非支配解方面充分显示了它们的优势。然而,在涉及多个涉众和功能的现实问题中,经常存在许多涉及四个或四个以上目标的优化问题。A:提出的NSGA-III,在原有NSGA-II的非支配框架的基础上,引入了参考点机制,解决目标空间维数过多遇到的一些问题。问题详述在目标空间维数过多的时候,会遇到:目
2021-01-05 17:07:59 3430 6
原创 【学习笔记】多目标优化问题分解成若干简单多目标子问题--MOEA/D-M2M
【学习笔记】多目标优化问题分解成若干简单多目标子问题--MOEA/D-M2M算法简介主要思想1.分解2.算法算法简介MOEA/D-M2M,一种基于分解的多目标优化进化算法。该算法将多目标优化问题分解成若干个简单的多目标子问题。以协作方式解决这些子问题。每个子问题都有自己的种群,并在每一代接受计算。通过这种方式,可以保持种群多样性,这对于解决一些多目标优化问题至关重要。在处理一些多目标优化问题的多目标进化算法中,种群多样性比收敛性更重要。这也解释了为什么MOEA/M2M表现更好。主要思想定义要优化的
2020-10-12 21:19:50 2788
原创 【学习笔记】Multi-Objective Differential Evolution Algorithm --MODEA
【学习笔记】Multi-Objective Differential Evolution Algorithm --MODEA正文(一)算法关键点(二).概念定义算法流程算法伪代码、算法流程图正文差分进化算法在处理多目标问题(MOP)会遇到很多问题。例如:如何生成新的点,从而更快地收敛到最优帕累托前沿,以及如何替换这些点,以获得尽可能多样的解集?**MODEA算法是对MDE算法(一种解决单目标问题优化的算法)的扩展。**在MODEA算法中,从算法开始就注意保持种群的多样性和产生潜在的候选解。除了使用反向
2020-10-09 00:00:43 1930 3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人