sql bug之repalce:Argument data type ntext is invalid

一、异常描述

[42000] [Microsoft][SQL Server Native Client 10.0][SQL Server]Argument data type ntext is invalid for argument 1 of replace function. (8116)

二、异常sql

// 批量替换掉文章中 127.0.0.1 替换为 域名 www.baidu.com
update F_Article
set ArticleContent = REPLACE(ArticleContent, ‘127.0.0.1’, ‘www.baidu.com’)
where ArticleContent like ‘%127.0.0.1%’;
// 其中 ArticleContent 字段类型是 ntext

三、异常及解决思路分析

关键词 ntext is invalid for argument 1 of replace function,可以看到ntext在replace函数是非法的
所以我们的解决思路,是转换 ntext为 varchar(max)

四、解决异常

// cast(ArticleContent as varchar(max))
update F_Article
set ArticleContent = REPLACE(cast(ArticleContent as varchar(max)), ‘127.0.0.1’, ‘www.baidu.com’)
where ArticleContent like ‘%127.0.0.1%’;

五、相关知识点

  • REPLACE函数

// 函数语法
REPLACE(string_expression , string_pattern , string_replacement)
// 参数说明
string_expression : 待搜索的内容
string_pattern : 要被替换的关键词
string_replacement: 被替换后的关键词

  • CAST函数

// 函数语法【以下只是一种格式】
CAST(expr AS CHAR(n) | CHARACTER(n) | VARCHAR(n))
// 参数说明
expr :带转换的内容
n : 长度,如果不确定,可以不写或者 max
详见参考: SQL函数 CAST

六、写在最后

此文章数据个人日常bug的记录,如有问题,请大家积极指导。

### 解决 Python 中 `TypeError: argument of type 'type' is not iterable` 错误 当遇到此错误时,通常是因为尝试迭代一个不可迭代的对象。Python 的某些内置对象(如整数、浮点数或类本身)不是可迭代的。 #### 原因分析 该错误表明代码试图在一个类型对象上执行迭代操作,而这个类型的实例并不是可迭代的。例如,在条件判断语句中直接使用类名而不是其实例可能会引发此类异常[^1]。 #### 示例场景重现 下面是一个可能导致上述错误的例子: ```python class MyClass: pass for item in MyClass: # 这里会抛出 TypeError print(item) ``` 这段代码中的 `MyClass` 是一个类定义而非其任何具体实例;因此它不是一个可以被遍历的对象。 #### 正确做法 要修正这个问题,应该确保只对确实支持迭代协议的数据结构进行循环访问或其他形式的操作。如果意图是对某个特定类型的多个实例集合做处理,则应先创建这些实例并将它们存储到列表等容器内再加以利用。 对于给定的具体情况——即在 `if` 条件表达式里面出现了同样的问题,应当检查并确认所使用的变量实际上包含了预期的值,并且这些值是可以用来比较或者作为布尔上下文中评估的有效项。 针对提供的第二个例子,其中涉及到 Pandas DataFrame 和 NumPy 库的情况: ```python import numpy as np import pandas as pd data = {"unit": np.nan} # 创建测试数据字典 # 不推荐的方式:这会导致 TypeError 因为 np.nan 类型不支持这样的运算 if data["unit"] is np.nan: data["unit"] = " " print(data) # 推荐方式:使用 pd.isna() 函数来检测缺失值 if pd.isna(data["unit"]): data["unit"] = " " print(data) ``` 这里的关键在于理解 `np.nan != np.nan` 总是成立的事实以及 `is` 关键词用于身份比较而不适合数值相等性的验证。为了安全起见,建议采用像 `pandas.isna()` 或者其他适当的方法来进行缺失值判定[^2]。 #### 额外提示 为了避免类似的错误发生,可以在编写代码之前仔细考虑逻辑流程图,明确哪些地方需要用到迭代器模式,同时注意区分不同种类的数据及其特性。此外,阅读官方文档可以帮助更好地掌握库函数的行为特点。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值