- 升级关闭的节点
- 要使用Debian或RPM软件包升级:
- 使用rpm或dpkg安装新包
- 所有文件都安装在操作系统的适当位置,并且 Elasticsearch 配置文件不会被覆盖
- 使用 zip 或压缩的 tarball 进行升级:
- 将 zip 或 tarball 解压缩到新目录
- 设置ES_PATH_CONF环境变量以指定外部config目录和jvm.options文件的位置
- 设置path.data在config/elasticsearch.yml以点到外部数据目录
- 设置path.logs在config/elasticsearch.yml以指向所需存储日志的位置
- 要使用Debian或RPM软件包升级:
- 升级所有插件
- 使用elasticsearch-plugin脚本安装每个已安装的elasticsearch插件的升级版本
- 升级节点时必须升级所有插件。
- 如果使用Elasticsearch安全功能来定义域,确认域设置是最新的
- 启动升级的节点
- 启动新升级的节点,并通过检查日志文件或提交_cat/nodes求来确认它已加入集群:
GET _cat/nodes
- 重新启用shard分配。
- 节点加入集群后,删除cluster.routing.allocation.enable 设置以启用分片分配并开始使用该节点:
PUT _cluster/settings
{
"persistent": {
"cluster.routing.allocation.enable": null
}
}
- 等待节点恢复
- 在升级下一个节点之前,等待集群完成分片分配
GET _cat/health?v
- 重复
- 当node恢复并且cluster稳定后,对每个需要更新的node重复这些步骤
- 可以通过一个_cat/health请求来监控cluster的健康状况:
GET /_cat/health?v=true
- 并通过_cat/nodes请求检查哪些node已升级:
GET /_cat/nodes?h=ip,name,version&v=true
- 重新启动机器学习作业
- 如果暂时停止了与机器学习作业关联的任务,请使用set upgrade mode API将它们返回到活动状态:
- 如果在升级之前关闭了所有机器学习作业,需打开作业并从Kibana或使用打开的作业并启动数据源API启动数据源
POST _ml/set_upgrade_mode?enabled=false
- 总结
- 在滚动升级期间,cluster继续正常运行
- 但是,在cluster中的所有node都升级之前,任何新功能都将被禁用或以向后兼容模式运行
- 万一在升级过程中发生网络故障,将所有剩余的旧node与cluster隔离,必须使旧node脱机并升级它们以使它们能够加入cluster
- 如果在升级过程中同时停止一半或更多master-eligible node条件的node,则cluster将变得不可用,这意味着升级不再是滚动升级
大数据视频推荐:
CSDN
大数据语音推荐:
ELK7 stack开发运维
企业级大数据技术应用
大数据机器学习案例之推荐系统
自然语言处理
大数据基础
人工智能:深度学习入门到精通