MATLAB入门-数据的导入和导出

MATLAB入门-数据的导入和导出

注:本篇文章是课程学习笔记,课程链接为:头歌

常见的几个导入数据的方法

  1. load函数
    load函数专门用于引入MATLAB的.mat格式数据,十分的简单方便。
    例如:一个-ASCII编码形式存储的数据文件student.mat,直接使用语句A=load(‘student.mat’,‘-ascii’);就可以将该数据导入到矩阵A中。

  2. textread函数
    是一种根据数据中重复出现的分隔符进行数据分类读取的方式。这个函数的使用方法有:
    [A,B,C,……]=textread(filename,format)
    [A,B,C,……]=textread(filename,format,N)
    […] = textread(…,param,value,…)
    其中filename表示的是需要导入的文件名,而format是一种格式化输入规定,常见的规定有:
    在这里插入图片描述

  3. importdata函数
    这个函数的用法为:
    A=importdata(filename)
    A=importdata(‘-pastespecial’)
    A=importdata(,delimiterIn)
    A=importdata(
    ,delimiterIn,headerlinesIn)

  4. dlmread函数
    常用的方式为M=dlmread(filename),

常见的几个导出数据的方法

  1. save函数
    最常用的函数之一,支持保存成.mat格式和.txt格式等。常用的形式为:
    save(filename)和save(fielname,variables)
  2. dlmwrite函数
    常见用法为:dlmwrite(filename,M)

课后小练

导入一份给定的学生成绩单src/lesson3/student.mat,该文件在目录src/lesson3下,学生人数及课程数未知,只知道每一行代表一名学生的所有成绩,而且每一列代表不同课程的成绩。
导入一份给定的课程学分表src/lesson3/course_credit.mat,该文件在目录src/lesson3下,该数据只有一行,每一列代表一门课程的学分设置,数据个数保证和成绩单上的课程数一致。
对给定的所有学生的各门成绩分别进行加权平均,算出各自的学分绩,并且输出学分绩最低的同学的编号及学分绩。
所谓的学分绩就是将给定的所有门成绩,各自乘上对应的学分,再除以总的学分。例如1号同学的三门成绩分别为90、80和70,三门课程的学分分别为3、2、4,那么学分绩的计算公式为(90x3+80x2+70x4)/(3+2+4)= 78.89,这就是该同学的学分绩。
在右侧的代码窗口中是goals_least.m文件,你需要在提示的begin到end区域之间补齐对应的代码,使最后的结果与要求的输出结果一致。

在这里插入图片描述

当然,下面是2024最新的计算机专业毕业设计选题的列表: 1. 基于深度学习的图像识别技术在智能安防中的应用研究 2. 基于区块链的数据隐私保护技术研究与应用 3. 基于机器学习的网络入侵检测系统设计与实现 4. 基于大数据分析的智能交通管理系统设计与优化 5. 虚拟现实技术在医学仿真培训中的应用研究 6. 人工智能在电子商务推荐系统中的应用研究 7. 无人机自主飞行技术研究与实现 8. 基于物联网的智能家居系统设计与开发 9. 基于深度学习的自然语言处理技术研究与应用 10. 基于云计算的大规模图像处理平台设计与实现 11. 区块链技术在供应链管理中的应用研究 12. 基于深度学习的股票预测模型设计与优化 13. 基于人工智能的智能教育系统设计与实现 14. 虚拟现实技术在游戏开发中的应用研究 15. 基于机器学习的恶意软件检测与防御技术研究 16. 基于大数据分析的智能城市交通优化系统设计与实现 17. 基于人工智能的智能客服系统设计与开发 18. 基于深度学习的医学图像分析与诊断技术研究 19. 基于物联网的智能农业监控系统设计与实现 20. 人工智能在金融风控中的应用研究 21. 基于深度学习的自动驾驶系统设计与实现 22. 基于区块链的数字身份认证技术研究与应用 23. 基于机器学习的文本情感分析与情感推荐技术研究 24. 基于大数据分析的智能医疗辅助诊断系统设计与开发 25. 基于人工智能的智能音乐推荐系统设计与实现 26. 基于深度学习的语音识别与合成技术研究 27. 基于物联网的智能能源管理系统设计与优化 28. 人工智能在智能制造中的应用研究 29. 基于深度学习的视频内容分析与检索技术研究 30. 基于区块链的数字版权保护技术研究与应用 31. 基于机器学习的社交媒体用户画像挖掘技术研究 32. 基于大数据分析的智能旅游推荐系统设计与实现 ***
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值