巧解粘贴到表格中的数据自动变日期格式(二段式的解法)

December2024the19thThursday
今天遇到这个老问题,明明已经把目标单元格们一起做了设置单元格为文本,但粘贴过去就自动变日期,齐刷刷的,让你想砸电脑。
看我的例子(数据是二段式的):
在word里有一个表格,如下
在这里插入图片描述要把它复制到表格里,但放到表格里就变日期格式,所以提前将目标单元格一并设置成了文本格式,但你猜怎么着?如下
在这里插入图片描述
它就是水灵灵的给你变日期格式了,到哪说理去!?

这其实是表格系统自己耍小聪明给改的,因为你粘过去的内容实在是太像日期了,所以表格系统用它智慧的小脑袋瓜就帮你 AI 转成日期格式的数据了,并且没有跟你打招呼,即便你提前将目标单元格一并做了设置单元格为文本的处理,聪明的表格系统仍然认为你是个大傻瓜并且好心的帮你转成了日期格式,为你的工作添砖加瓦,TMD。
所以,面对表格这个大聪明,就不要跟它讲道理了,just do it 就完事了。

1.先看我的数据是用横线(也就是减号)分隔的“2段式”格式,
2.随便找一个已经被大聪明转成日期格式的单元格,然后查看单元格格式,
在这里插入图片描述比如,我找的是被大聪明转成日期格式的数据中的“1月22日”这个单元格,然后,
我右键点选“设置单元格格式”,
在弹出的“单元格格式”对话框中,
默认展现的是“数字”选项卡中,
分类”中的“自定义”,
而且其“类型(T):
是“m"月"d"日"”
可以看到,我们的 在这里插入图片描述
就是让大聪明按 m"月"d"日的格式给改成
在这里插入图片描述的,
也就是,大聪明把 1 当成了 m,把 22 成了 d
m 就是 month,d 就是 day 哈,
大聪明把我们的二段式数据就认死理看成是日期,咱们也不用去与其争执,
既然大聪明就是按 m"月"d"日 这个规则给改的,我们就改规则,或者严格意义上来说是改日期的显示格式,那么大聪明就会去照做,这得有多爽哈,说干就干

所以,要想避开大聪明的干扰,我们就要显式的告知表格系统接下来要处理的数据必须以我们希望的方式呈现,操作方法如下,

  1. 先关闭已经打开的“单元格格式”对话框
  2. 圈选已经被大聪明糟蹋后变成日期格式的数据单元格们,
    在这里插入图片描述3. 右击点选 “设置单元格格式”,重新打开 “单元格格式”对话框,
    在这里插入图片描述4. 然后,精彩的来了,我们直接掏当间儿,将“数字”/“分类”/“自定义”/“类型(T):”,里写上 m-d,如下:
    在这里插入图片描述
    然后一个优雅的点击“确定”按钮,再看一下,

在这里插入图片描述沃哩个豆!!!就问你爽不爽,这就是想要的数据格式。
同理,如果你的分隔符不是减号-,而是斜杠/,没关系,
将“数字”/“分类”/“自定义”/“类型(T):”,里写上 m/d,如下:
在这里插入图片描述然后优雅的确定,吃屋啊的一下,变到你想要的格式,
在这里插入图片描述就是这么丝滑,

通过上面的内容,我们还可以扩展一下,
比如,我们要粘贴的格式是:12/1/1这种三段式的,那么我们在改写 类型(T):的时候,就要用到字母y了,
因为二段式被认为是m和d含月日的日期,
所以三段式,自然会被表格系统认为是含年月日的日期,所以需要用到字母y、m、d
做个实验,试试
要粘的数据:如下
在这里插入图片描述粘过去的效果,如下
在这里插入图片描述不符合预期,
改 “类型(T):”,如下:
在这里插入图片描述再看结果,如下
在这里插入图片描述这里需要注意一下,结果和我们的预期还是有区别的,多了一个0
这是因为在表格系统中,年的位数最少2位(最多4位),
所以当我们的数据不足两位的时候,表格系统会用0去补全,
所以,面对三段式的数据,我们还是用老办法,将目标的单元格统一设置为文本格式,然后再粘贴过去就没问题了。

又是一个神清气爽憋大尿的日子。
December2024the19thThursday

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值