输入n个元素组成的序列s,你需要找出一个乘积最大的连续子序列

#include <iostream>
using namespace std;
const int N = 18;

int max(int a,int b)
{
    return a>b?a:b;
}

int main(void)
{
    int t = 0;
    int n, a[N];

    while (scanf("%d",&n)!= EOF && n) {
        for (int i = 0; i < n; i ++)
            scanf("%d", &a[i]);

        long res = a[0];
        for (i = 0; i < n; i ++) {
            long int mult = 1;
            for (int j = i; j < n; j ++) {        //关键语句,遍历所有的序列
                mult *= a[j];
                res = max(mult, res);
            }
        }
        if (res < 0) res = 0;
        printf("Case #%d: The maximum product is %lld.\n\n", ++t, res);
    }

    return 0;
}

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 可以使用动态规划来解决这个问题。 定义一个数组dp,其中dp[i]表示以第i个元素为结尾的最长单调递增子序列的长度。 初始化dp数组为1,因为每个元素本身都可以作为一个长度为1的单调递增子序列。 然后从第二个元素开始遍历整个序列,对于每个元素i,再从第一个元素到第i-1个元素中找到比它小的元素j,如果存在这样的元素j,则更新dp[i]为dp[j]+1,表示以j为结尾的最长单调递增子序列再加上i这个元素可以构成以i为结尾的更长的单调递增子序列。 最后,遍历整个dp数组,找到其中最大的值,即为整个序列的最长单调递增子序列的长度。 时间复杂度为O(n^2)。 ### 回答2: 最长单调递增子序列(Longest Increasing Subsequence,LIS)是一道经典的动态规划问题,可以使用O(n2)或O(nlogn)的方法求解。 以下是一个O(n2)的DP算法: 设dp[i]表示以第i个元素结尾的最长单调递增子序列的长度,初始化dp[i]=1(因为以第i个元素结尾的最短递增序列长度为1)。 对于每个j<i,如果nums[j]<nums[i],说明第j个元素可以接在第i个元素后面构成递增序列,此时更新dp[i]=max(dp[i],dp[j]+1)。 最后遍历dp数组,找到最大值即可。 具体实现如下: int lengthOfLIS(vector<int>& nums) { int n=nums.size(),res=1; vector<int> dp(n,1); for(int i=1;i<n;i++){ for(int j=0;j<i;j++){ if(nums[j]<nums[i]) dp[i]=max(dp[i],dp[j]+1); } res=max(res,dp[i]); } return res; } 该算法时间复杂度为O(n2),空间复杂度为O(n)。 ### 回答3: 一、问题分析 题目要求我们设计一个o(n2)时间的算法,找出由n个数组成序列的最长单调递增子序列。 首先我们需要明确,什么是子序列?什么是最长单调递增子序列? 1. 子序列:在给定序列中,选择任意数量的数字进行排列组合,而这些数字按照原始序列中的顺序,组成的新序列称为原序列子序列。 2. 最长单调递增子序列:在原序列中找到一组连续的元素,使得它们按原序列的顺序从小到大排列,并且满足长度最长。 我们需要设计的算法,即为找出给定序列的最长单调递增子序列。 二、算法设计 1. 定义状态 我们定义状态数组dp[i]为以第i个元素作为结尾的最长递增子序列长度。 2. 初始化 对状态数组进行初始化,将dp[i]置为1,因为我们可以将每个元素看做是一个长度为1的递增子序列。 3. 状态转移方程 对于下标i和j,若i<j且a[i]<a[j],则dp[j] = max(dp[j], dp[i]+1)。 这个方程的含义是,如果第i个元素比第j个元素小,并且以第i个元素为结尾的最长递增子序列加上第j个元素的话,能够得到以第j个元素结尾的递增子序列的长度,则将dp[j]更新为dp[i]+1。 在这个过程中,我们会从前往后逐个计算状态,并且在每次计算dp[j]时,都需要通过遍历0~j-1来计算其值,所以时间复杂度为o(n2)。 4. 计算最长单调递增子序列长度 对状态数组进行遍历,找出其中的最大值即为给定序列的最长单调递增子序列长度。同时,我们也可以通过倒推出具体的递增子序列内容。 三、算法实现 下面是算法的具体实现: ```python def longestIncreasingSubsequence(nums): n = len(nums) dp = [1] * n for j in range(n): for i in range(j): if nums[i] < nums[j]: dp[j] = max(dp[j], dp[i] + 1) return max(dp), getSubsequence(nums, dp) def getSubsequence(nums, dp): n = len(nums) length = max(dp) index = dp.index(length) subsequence = [nums[index]] while length > 1: for i in range(index-1, -1, -1): if nums[i] < nums[index] and dp[i] == length-1: subsequence.append(nums[i]) index = i length -= 1 break return subsequence[::-1] ``` 四、总结 最长单调递增子序列问题可以通过动态规划的方式来解决,时间复杂度为o(n2)。在实际应用中,我们可以使用这个算法来解决一些子问题,比如求解二维点集中的最大递增子集合。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值