动态规划+哈希表
提示:这里描述项目中遇到的问题:
最长不含重复字符的子字符串,如果用动态规划的方法,我们可以想到用dp[i]表示以第i个字符结尾的不含重复字符的子字符串的最大长度。
那么dp[i]如何通过前面的dp[i-1]递推得到呢?
可以从dp[0]开始,当字符串不为空时,一定可以得到dp[0] = 1。
以"abcabcbb"为例,dp[0] = 1;
循环判断当前字符是否在前面出现过,这里需要用到哈希表记录前面字符出现过的位置;
如果当前字符首次出现,那么dp[i] = dp[i - 1] + 1,比如dp[2] = dp[1] + 1, dp[3] = dp[2] + 1;
如果当前字符和哈希表记录的发生重复,计算当前字符位置与前面重复的字符位置的距离i - j,这里就要分两种情况:
(1)距离i - j > dp[i - 1],即前面重复的那个字符已经不在当前最长非重复子串里面了,比如"abcdeca"中的’a’,我们直接将当前长度在前面的基础上加一即可,因此dp[i] = dp[i - 1] + 1;
(2)i - j <= dp[i - 1], 即前面重复的那个字符包含在当前最长非重复子串里面了,如上面的’c’,我们当前新的最长非重复子串长度应该为i - j,即dp[i] = i - j;
5.更新哈希表
6.取dp中的最大值即为答案。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
int n = s.size();
if(n==0) return 0;
vector<int> dp(n,0);//dp[i] :包含第i个数的最长不重复数量
dp[0]=1;
unordered_map<char,int> map;//下标key为字符,值value为该字符的位置。 比如“ab” 的map为 map[a]=0 map[b]=1
int max_value=1;//默认为第一个字符的长度
map[s[0]] = 0;
for(int i = 1; i<n; i++)
{
/****************** 通过查看该字符的上一个位置来进行 ********************/
/**** 没记录过上一个位置,说明第一次出现 肯定可以连接dp[i-1] *********/
if(map.find(s[i]) == map.end() )
{
dp[i] = dp[i-1] +1;
}
else
/*****记录过上一个位置。它有两种可能(1)在dp[i-1]的范围外。(2)在dp[i-1]里面 **********/
{
if(map[s[i]] < i - dp[i-1])//上一个位置不在dp[i-1]范围内 ,可以直接连起来
{
dp[i] = dp[i-1] +1;
}
else
dp[i]= i -map[s[i]];//上一个位置在dp[i-1]范围内 ,则长度 = 这个位置-上一个位置
}
map[s[i]] = i;//记录位置
max_value = max(max_value,dp[i]);//更新最大值
}
return max_value;
}
};
滑动窗口 + 哈希表
利用滑动窗口也可以方便的解决这个问题,思路类似上面的解法,利用双指针,left和i,i指针遍历整个字符串,
初始时left = -1,向右遍历字符串,如果没有遇到重复的字符,则不含重复字符的子字符串的长度就为i - left,一直增加。当出现和前面重复的字符时,将left指针移到此字符的位置,每次遇到重复的字符时,left都要更新。
代码
class Solution {
public:
int lengthOfLongestSubstring(string s) {
if(s.empty()) return 0;
if(s.size() == 1) return 1;
int res = 0,left = -1;
unordered_map<char ,int> hash;
for(int i = 0; i < s.length(); i++){
if(hash.find(s[i]) != hash.end()){
left = max(hash[s[i]], left);
}
hash[s[i]] = i;
res = max(res, i - left);
}
return res;
}
};