这些日子一直在学习遗传算法,在CSDN上看了好多关于遗传算法的例子,但是找不到一个符合自己的例子。
自己的需求:有四个变量,寻求最优化的结果。
跟那些用二元函数举例的不同。
首先介绍下,
1. 遗传算法的流程:
假设有100个个体,计算每个个体的适应度(即性能),通过轮盘算法,选择100个个体,这100个不是前面的100个,而是根据适应度从新选择的,适应度高的一般多选,适应度低的一般淘汰掉,总数为100个,然后这100个就可以进行遗传操作,一般顺序是交叉、变异,然后形成的新种群就是下一代了。这就是一次循环,然后设置循环N次,就可以了。这里的适应度是根据自己的问题来设置的,一般是取最大值。
2. 注意的问题
我介绍的遗传算法matlab程序是多个变量、二进制的。
3. 细节介绍
其实交叉、变异的程序都大同小异,对于单个变量和多个变量的区别在于设置的pop。如果你是多个变量,每个变量设置20位二进制来表示,那么你pop就要设置的列数为变量数乘以20,行数是个体的数目。这是第一个理解的地方。
接下来就是计算适应度的程序了。这里假设变量数为4个,个体数为50个,故pop是一个【50,4*20】的数组大小。这里是二进制哈,你要计算的话,得转化为十进制,所以需要一个binary2decimal()函数,用法如下:
x1 = binary2decimal(pop(i,1:20));
x2 = binary2decimal(pop(i,21:40));
x3 = binary2decimal(pop(i,41:60));
x4 = binary2decimal(pop(i,61:80));
这里的i是代表每个个体。那么久通过上面的函数得到四个变量了,带入自己模型所对应的函数计算,可以得到每个个体的适应度。
然后就是选择函数,交叉函数,变异函数。
最后将新的种群赋值给pop,再次循环,知道循环次数结束。