回溯法之装载问题(初级)

该博客讨论了如何运用回溯法解决一个经典问题——在不超过船只载重限制的情况下,找出能装载的最大集装箱重量。代码示例展示了一个C++实现的回溯算法,用于寻找最优装载方案,但并未记录最优装载路径。要记录路径,只需在回溯过程中添加相应逻辑。
摘要由CSDN通过智能技术生成

问题描述:求解简单装载问题。设由一批集装箱要装上一艘载重量为W的轮船,其中编号为i(0<=i<=n-1)的集装箱的重量为wi。现要从n个集装箱中选出若干个装上轮船,使它们的重量之和达到最高但不超过W。

回溯法:明显的深度优先搜索策略,可以理解为迪杰斯特拉算法走迷宫。

#include<iostream>
using namespace std;

class Loading {
	friend int MaxLoading(int w[], int c, int n);
private:
	void Backtrack(int i);
	int n;//集装箱个数
	int* w;//对应重量数组
	int c;//轮船承重
	int cw;//当前载重量
	int bestw;//当前最优载重量
};

void Loading::Backtrack(int i) {
	if (i > n)
	{
		if (cw > bestw)bestw = cw;
		return;
	}
	if (cw + w[i] <= c) {//这个相当于左剪枝函数
		cw += w[i];//x[i]=1 这里表示第I个箱子可以取
		Backtrack(i + 1);
		cw -= w[i];
	}
	Backtrack(i + 1);//这里直接表示想x[i]不取,进入下一个箱子判断
}
int MaxLoading(int w[], int c, int n) {
	//返回最优装载重量
	Loading X;
	X.w = w;
	X.c = c;
	X.n = n;
	X.bestw = 0;
	X.cw = 0;
	X.Backtrack(1);
	return X.bestw;
	}

int main() {
	int c = 10;
	int w[] = { 0,1,2,5,11 };
	int n = 4;
	cout<<MaxLoading(w, c, n);
	return 0;
}

这个现实结果只会打印出最优装载结果,并没有保存最优装载的路径,可以在Loading类中添加一个保留当前添加项的数组和最优装载路径数组,在迭代中中添加对应操作即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值