问题描述:求解简单装载问题。设由一批集装箱要装上一艘载重量为W的轮船,其中编号为i(0<=i<=n-1)的集装箱的重量为wi。现要从n个集装箱中选出若干个装上轮船,使它们的重量之和达到最高但不超过W。
回溯法:明显的深度优先搜索策略,可以理解为迪杰斯特拉算法走迷宫。
#include<iostream>
using namespace std;
class Loading {
friend int MaxLoading(int w[], int c, int n);
private:
void Backtrack(int i);
int n;//集装箱个数
int* w;//对应重量数组
int c;//轮船承重
int cw;//当前载重量
int bestw;//当前最优载重量
};
void Loading::Backtrack(int i) {
if (i > n)
{
if (cw > bestw)bestw = cw;
return;
}
if (cw + w[i] <= c) {//这个相当于左剪枝函数
cw += w[i];//x[i]=1 这里表示第I个箱子可以取
Backtrack(i + 1);
cw -= w[i];
}
Backtrack(i + 1);//这里直接表示想x[i]不取,进入下一个箱子判断
}
int MaxLoading(int w[], int c, int n) {
//返回最优装载重量
Loading X;
X.w = w;
X.c = c;
X.n = n;
X.bestw = 0;
X.cw = 0;
X.Backtrack(1);
return X.bestw;
}
int main() {
int c = 10;
int w[] = { 0,1,2,5,11 };
int n = 4;
cout<<MaxLoading(w, c, n);
return 0;
}
这个现实结果只会打印出最优装载结果,并没有保存最优装载的路径,可以在Loading类中添加一个保留当前添加项的数组和最优装载路径数组,在迭代中中添加对应操作即可。