CF1415-C. Bouncing Ball

CF1415-C. Bouncing Ball

题意:

x x x轴上有 n n n个点(从 1 1 1 n n n),每个点都有一个值 0 0 0 1 1 1 0 0 0代表这个点不能走, 1 1 1代表这个点可以走。你可以对这 n n n个点执行一下两个操作:

1. 花费 x x x让一个值为 0 0 0的点变为 1 1 1

2. 花费 y y y删除第一个点,其余的点的 x x x轴坐标整体减一。

完成上面操作之后,你从点 p p p出发,每次向前跳 k k k个单位,即你能跳的位置有 { p , p + k , p + 2 k , . . . } \{p,p+k,p+2k,...\} {p,p+k,p+2k,...} 直到跳出这 n n n个点。若在跳出这 n n n个点之前落在了一个值为 0 0 0的点上,那么就失败了。

那么为了能成功的跳出这 n n n个点,最小的花费是多少?


思路:

一般的思路,枚举前面一共移除多少块,然后从 p p p点开始,每次往前跳 k k k个单位,遇到 0 0 0就在总花费中加上 x x x,最终取花费最小的作为答案,但是复杂度高达 O ( n 2 / k ) O(n^2/k) O(n2/k)这是不能接受的。

我们可以先对这些数据进行预处理,利用DP从后往前算出花费, d p [ i ] dp[i] dp[i]表示的状态是:当 i i i点作为 p p p点,要跳出 n n n个点的花费(这里不包括移除前面的点的花费),转移方程为 f ( x ) = { d p [ i ] = a [ i ] = = 1 ? 0 : x , i + k > n d p [ i ] = d p [ i + k ] + a [ i ] = = 1 ? 0 : x , i + k < = n f(x)=\left\{\begin{aligned}&dp[i]=a[i]==1?0:x,&i+k>n\\&dp[i]=dp[i+k]+a[i]==1?0:x,&i+k<=n\end{aligned}\right. f(x)={dp[i]=a[i]==1?0:x,dp[i]=dp[i+k]+a[i]==1?0:x,i+k>ni+k<=n

处理完这些数据就可以从 p p p点开始枚举每一个点,那么从这点出发的总花费就是 ( i − p ) ∗ y + d p [ i ] (i-p)*y+dp[i] (ip)y+dp[i],全部枚举完取最小的一个就是答案。


AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>

typedef long long ll;

const int Maxn = 100005;
const int INF = 0x3f3f3f3f;

int dp[Maxn], a[Maxn];

void solve() {
	int n, p, k;
	scanf("%d %d %d", &n, &p, &k);
	for (int i = 1; i <= n; i++) {
		scanf("%1d", a + i);
	}
	int x, y;
	scanf("%d %d", &x, &y);
	for (int i = n; i >= p; i--) {
		if (i + k > n) {
			dp[i] = a[i] == 1 ? 0 : x;
		} else {
			dp[i] = dp[i + k] + (a[i] == 1 ? 0 : x);
		}
	}
	int ans = INF;
	for (int i = p; i <= n; i++) {
		ans = std::min(ans, (i - p) * y + dp[i]);
	}
	printf("%d\n", ans);
}

int main() {
	int T;
	scanf("%d", &T);
	while (T--) {
		solve();
	}

	return 0;
}

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值