CF1463-D. Pairs

CF1463-D. Pairs

题意:

有从 1 1 1 2 n 2n 2n一共 2 n 2n 2n个数字,让你将这 2 n 2n 2n个数字分成 n n n组,每组有两个数字。对于这 n n n组数字,你可以从中挑选 x x x组做 m i n min min操作,其他的 n − x n-x nx组中做 m a x max max操作,这样就可以得到一个新的数组 b b b; 现在题目给你得到的数组 b b b,问你可以有多少不同的 x x x使得可以得到数组 b b b


思路:

我们从这 2 n 2n 2n个数字中去掉数组 b b b中的数,剩下的就是数组 a a a中的数。对 a a a b b b数组排序之后,我们现在先枚举每个 x x x a a a中最大的 x x x个数字从小到达与 b b b中最小的x个数字从小到大组合,让 a a a中剩余的 n − x n-x nx个数字从小到大与 b b b中剩余的 n − x n-x nx个数字从小到大组合(类似于贪心的思想),这个应该是最优的情况,如果这样还是不能通过前 x x x个取 m i n min min n − x n-x nx m a x max max得到数组 b b b,那么对于这个 x x x无论你再怎么组合都不可能得到数组 b b b

从理论上来说上面这种枚举+贪心的方法肯定能得到最终的答案,但是时间复杂度达到了 o ( n 2 ) o(n^2) o(n2),这是不能接受的。我们再仔细分析一下,会发现符合要求的 x x x是连续的、在一个区间里面的,原因如下:

我们假设符合要求的 x x x的区间为 [ L , R ] [L, R] [L,R]。现在我们将 x = R x=R x=R情况对应的组合进行操作可以得到 x = R + 1 x=R+1 x=R+1的情况:将数组 a a a n − x n-x nx个最小的数字中最大的一个数字(称它为 i i i)与数组 b b b x x x个最小的数字中最小的一个数字(称它为 j j j)进行组合,这时候一定是因为 i < j i<j i<j从而取 m i n min min操作时不能得到 j j j所以不符合条件。而对于之后的 x = R + 1 , . . . , x = n x=R+1, ..., x=n x=R+1,...,x=n的情况, b b b x x x个数字最小的数字中最小的数字是不变的,而 a a a x x x个最小的数字是不断变小的,所以之后的情况也都是不符合的。同理我们也可以从 x = L − 1 , . . . , x = 0 x=L-1,..., x=0 x=L1,...,x=0这些情况中得到同样的结论。

通过这个结论,我们可以通过两次二分查找,找到符合条件的 x x x区间 [ L , R ] [L, R] [L,R] L L L R R R,这样就可以将时间复杂度优化到 o ( n l o g n ) o(nlogn) o(nlogn)

AC代码

#include <cstdio>
#include <cstring>
#include <algorithm>
 
const int maxn = 2e5 + 5;
 
int a[maxn], b[maxn];
 
int check(int mid, int n) { // 0 suit;  1 l = mid + 1; 2 r = mid - 1;
	for (int i = 0; i < mid; i++) {
		if (b[i] > a[n - mid + i]) {
			return 2;
		}
	}
	for (int i = 0; i < n - mid; i++) {
		if (a[i] > b[mid + i]) {
			return 1;
		}
	}
	return 0;
}
	
int main() {
	int T, n;
	scanf("%d", &T);
	while (T--) {
		scanf("%d", &n);
		for (int i = 0; i < n; i++) {
			scanf("%d", &b[i]);
		}
		std::sort(b, b + n);
		int tot = 0, cur = 0;
		for (int i = 0; i < 2 * n; i++) {
			if (i + 1 == b[cur]) {
				cur++;
			} else {
				a[tot++] = i + 1;
			}
		}
		int l = 0, r = n;
		while (l <= r) {
			int mid = (l + r) >> 1;
			if (check(mid, n) != 1) {
				r = mid - 1;
			} else {
				l = mid + 1;
			}
		}
		int L = l;
		l = 0, r = n;
		while (l <= r) {
			int mid = (l + r) >> 1;
			if (check(mid, n) != 2) {
				l = mid + 1;
			} else {
				r = mid - 1;
			}
		}
		int R = r;
		printf("%d\n", R - L + 1);
	}
 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值