决策树公式推导

信息熵: E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k log ⁡ 2 p k Ent(D) = -\sum ^{\lvert y \rvert}_{k=1} p_k \log_2 p_k Ent(D)=k=1ypklog2pk

信息增益: G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D, a) = Ent(D) - \sum_{v=1}^V \frac{\lvert D^v \rvert}{\lvert D \rvert} Ent(D^v) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv),信息增益最大的节点靠上。

例如“色泽”的信息增益为: G a i n ( D , 色 泽 ) = E n t ( D ) − ∑ v = 1 3 ∣ D v ∣ D E n t ( D v ) = 0.998 − ( 6 17 × 1.000 + 6 17 × 0.9128 + 5 17 × 0.722 ) = 0.109 Gain(D,色泽)=Ent(D)-\sum_{v=1}^3\frac{\lvert D^v \rvert}{D}Ent(D^v)\\=0.998 - (\frac{6}{17}\times 1.000 + \frac{6}{17}\times 0.9128 + \frac{5}{17} \times 0.722)\\=0.109 Gain(D,)=Ent(D)v=13DDvEnt(Dv)=0.998(176×1.000+176×0.9128+175×0.722)=0.109

import math

# 属性的取值范围(0~n-1)
data = [[0, 0, 0, 0],
        [0, 0, 0, 1],
        [0, 0, 1, 0],
        [1, 0, 1, 1],
        [0, 1, 0, 0],
        [0, 1, 0, 1],
        [1, 1, 1, 0],
        [0, 1, 1, 1],
        [0, 1, 0, 1]]
label = [1, 1, 0, 1, 0, 1, 0, 1, 1]
TARGET_LABEL = 1

ATTRIBUTION_LIMIT = [2, 2, 2, 2]
ATTRIBUTION_SIZE = len(ATTRIBUTION_LIMIT)
LABEL_LIMIT = max(label) + 1

cnt = []
for i in range(ATTRIBUTION_SIZE):
    att = []
    for j in range(ATTRIBUTION_LIMIT[i]):
        att.append([0 for _ in range(LABEL_LIMIT)])
    cnt.append(att)

for data_id in range(len(data)):
    for att_id in range(len(data[data_id])):
        t = cnt[att_id][data[data_id][att_id]][label[data_id]] + 1
        cnt[att_id][data[data_id][att_id]][label[data_id]] = t


# cnt[属性][属性的具体分类][标签]

def cal(att_id, label_id):
    res = 0.0
    att = cnt[att_id]
    tot = 0
    for comp_id in range(ATTRIBUTION_LIMIT[att_id]):
        tot = tot + sum(att[comp_id])
    for comp_id in range(ATTRIBUTION_LIMIT[att_id]):
        t = 1.0 * att[comp_id][label_id] / tot
        if t == 0.0:
            continue
        res = res + t * math.log2(t)
    return res


order = [[i, cal(i, TARGET_LABEL)] for i in range(ATTRIBUTION_SIZE)]
for i in range(ATTRIBUTION_SIZE):
    for j in range(i + 1, ATTRIBUTION_SIZE):
        if order[j][1] > order[i][1]:
            t = order[i][1]
            order[i][1] = order[j][1]
            order[j][1] = t

trie = [[-1 for _ in range( ATTRIBUTION_LIMIT[order[0][0]] )]]
trie_id = 0

def insert(data_id):
    global trie_id
    Data = data[data_id]
    p = 0
    for i in range(ATTRIBUTION_SIZE):
        att_id = order[i][0]
        t = Data[att_id]
        if trie[p][t] == -1:
            trie.append([-1 for _ in range( ATTRIBUTION_LIMIT[att_id] )])
            trie_id = trie_id + 1
            trie[p][t] = trie_id
        p = trie[p][t]
    trie[p] = label[data_id]

def query(data):
    p = 0
    for i in range(ATTRIBUTION_SIZE):
        att_id = order[i][0]
        t = data[att_id]
        if trie[p][t] == -1:
            return -1
        p = trie[p][t]
    return trie[p]


for i in range(len(data)):
    insert(i)

for i in range(len(data)):
    print(query(data[i]))


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
XGBoost(eXtreme Gradient Boosting)是一种基于梯度提升树的机器学习算法,它在各种机器学习竞赛中表现出色。下面是XGBoost的原理和公式推导: 1. 原理: XGBoost是一种集成学习算法,通过组合多个弱学习器(决策树)来构建一个强学习器。它采用了梯度提升的思想,每一轮迭代都通过拟合前一轮模型的残差来训练新的模型,然后将新模型加入到集成中。 2. 损失函数: XGBoost使用了一种特殊的损失函数,称为目标函数。目标函数由两部分组成:损失函数和正则化项。常用的损失函数有平方损失函数、逻辑损失函数等。 3. 梯度提升: 在XGBoost中,每个决策树都是通过梯度提升来构建的。梯度提升的过程可以简单描述为以下几个步骤: - 初始化模型:将初始预测值设置为常数,通常为训练集样本的平均值。 - 计算残差:计算当前模型对训练集样本的预测值与真实值之间的差异,得到残差。 - 拟合决策树:使用残差作为目标变量,拟合一个决策树模型。 - 更新模型:将新的决策树模型加入到集成中,并更新模型的预测值。 - 重复以上步骤,直到达到预定的迭代次数或满足停止条件。 4. 正则化: 为了防止过拟合,XGBoost引入了正则化项。正则化项由两部分组成:树的复杂度和叶子节点权重的L1或L2正则化。通过控制正则化参数,可以平衡模型的复杂度和拟合能力。 5. 公式推导: XGBoost的公式推导涉及到目标函数、损失函数、正则化项等,具体推导过程较为复杂。你可以参考XGBoost的论文《XGBoost: A Scalable Tree Boosting System》中的相关推导部分,详细了解公式推导的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值