matlab 列主元 三角分解法 解线性方程组 数值分析

%MtriangleDecomposition
%带列主元法的三角分解


%input输入矩阵,包括系数和参数
%inputC 用于分解LU矩阵的合成矩阵
%oringinData保留的初始矩阵
%output 输出答案,对应X的各个值
%Toutput:修正顺序后的答案,对应输入数据的X顺序
%rememberdet:行列变化中介值
%remember:行列变化记录矩阵
%xnum,ynum 输入矩阵的尺寸
%Lneed 消元中,主式需要乘的变量
%keepnum 保留小数位数
%contrastFrom(各个多项式的误差)
%deltanum:矩阵中变化的最大值
%Ldet:分解出来的下矩阵
%Udet:分解出来的上矩阵

%%注意,元素中不能有为零的数
clear all%启用模块化后需要注释该句

input=[0,2,0,1,0;
    2,2,3,2,-2;
    4,-3,0,1,-7;
    6,1,-6,-5,6];%输入矩阵
oringinData=input;



error1='the condition are not meet for using this algorithm' ;

%format short%设置精度 short为精确到小数点后3位 数值型 roundn(A,3)保留3位小数

keepnum=-20;%设置保留n位小数,记得加负号表示小数位
[ynum,xnum]=size(input);%获取输入矩阵大小

Ldet=zeros(ynum);
Udet=zeros(ynum);%创建LU的背景矩阵
inputC=input;
[Ldet,Udet]=lu(input);


%开始解方程组
%回代
for i=1:ynum%这里计算出结果
    output(ynum+1-i,1)=roundn(Udet(ynum+1-i,xnum),keepnum)/roundn(Udet(ynum+1-i,xnum-i),keepnum)%output为输出结果
    for j=i+1:ynum
        %回代结果到多项式中,将其他值消除
        if i<ynum
            Udet(ynum+1-j,xnum)=roundn(Udet(ynum+1-j,xnum),keepnum)-roundn(Udet(ynum+1-j,xnum-i)*output(ynum+1-i,1),keepnum);
            Udet(ynum+1-j,xnum-i)=0;
        end
    end
    
end

  • 3
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
实验一 元消去法 【实验内容】 1. 理高斯顺序消去法; 2. 理元高斯消去法在求精度上的优点; 3. 完成元消去法的程序; 4. 会用系统内置命令求有唯一线性方程组; 【试验方法与步骤】 一 、 回答下面的问题 1. 什么是线性方程组直接解法和迭代解法,各自的特点和使用问题类型是什么? 2. LU 分是直接解法还是迭代解法, L 、 U 矩阵的特点是什么,应用在哪些问题 中,请举例说明。 3. 给出一个舍入误差严重影响计算结果精度的例子,试着能否从多个角度说明产 生该问题的原因。 4. 迭代解法的收敛性有什么意义,收敛条件用什么判定? 5. 给出例子,并说 明迭代收敛的速度。 二 、 完成下计算,写出代码 1. 用 crame 法则、用 LU 分函数、逆矩阵函数分别完成 P35 例 3.2.1 2. 编写元消去法程序,完成 P35 例 3.2.1 和习题 3 第 2 题 3. 用雅克比、高斯 塞德尔和 SOR 迭代完成习题 3 第 13 题,进行收敛速度的比较 分析 第 2 页 共 13 页 【实验结果】 一、第一大题 1.线性方程组解法 2.LU 分解法 1. LU 分属于直接解法 2. L 矩阵特点:一个对角线上的元素全为1 的下三角矩阵(即单位下三角矩阵)。 3. U 矩阵特点:上三角矩阵 4. 应用:LU 分要应用在数值分析中,用来线性方程、求反矩阵或计算行解法 直接解法 迭代解法 定义 经过有限步算数运算,可求得方程组 的精确的方法 用某种极限过程逐步逼近线性 方程组精确的方法 特点 运算步骤有限、可得精确 极限逼近思想 适用问 题类型 计算过程中没有舍入误差 向量值序收敛于向量* x 即 *) ( limx x k k = → 举例    − = + = 3 20 26 5 2 8 x y x y    = − = = = = −    − = + = * 1 * 2 53 106 2, 1 3 20 26 50 20 80 y x x x y x y x y 即有精确 ,所以 两式相加,得    − = + = 3 20 26 5 2 8 x y x y , 0,1,2,... 0.15 1.3 0.4 1.6 ( 1) ( ) ( 1) ( ) =     = − = − + + + k y x x y k k k k 改写为迭代公式 其结果不断逼近精确 然后不断迭代, 取 0,得 1.6, -1.3, (0) (0) (1) (1) x = y = x = y = 第 3 页 共 13 页 3.舍入误差严重影响计算结果精度的例子 建立 dx的递推公式 x x I n n  + = 1 0 5 (教材第二页) 法1:      − = − = − 1 0 5 1 5 ln 6 ln n In n I I 法2: 由0  In  In − 1,得5In − 1  In +5In − 1  6In − 1      = − +    =  +    + =    − − − n I I I I n I n n I I n n n n n 5 1 5 1 0.0087301587 0.0087301587 2 1 ) 5 21 1 6 21 1 ( 5 1 6 1 0 1 5 1 20 20 将 1 带入上式,得 1 由于计算机只能存储有限位小数,所以在法1 中,随着n 的增大,其误差就会越来 越大,最后很大程度的偏向精确;但是在法2 中尽管20 I 取得比较粗略,但是随着n 的增大,其误差随传播逐步缩小,所以其最后计算得到的结果是可靠的。 4.迭代解法的收敛性 迭代解法 的收敛性 意义 无线逼近精确,便于在计算机上实现编程 收敛条件的 判定 向量值序收敛于向量x * 即 * ( ) limx x k k = → 第 4 页 共 13 页 5.举例说明迭代收敛的速度 分别用雅可比迭代法(J)、高斯—塞德尔迭代法(G-S)、超松弛迭代法(SOR)计算方组 =            − − − − 0 1 4 1 4 1 4 1 0           3 2 1 x x x =   10 8 10 雅可比迭代 高斯—塞德尔迭代 次 数 X1 X2 X3 误差 次数 X1 X2 X3 误差 1 2.5000 2.0000 2.5000 2.1594954 1 2.5000 2.6250 3.1563 1.4570586 2 3.0000 3.2500 3.0000

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值