YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

该博客介绍了通过引入混合注意力机制(HAM)改进YoloV8的三种策略。首先,在输出的FeatureMap上应用注意力,其次在Neck的上采样区域加入HAM,最后在Head层集成HAM。通过修改代码并训练,实验结果显示这些改进提升了模型的检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

HAM通过快速一维卷积来缓解通道注意机制的负担,并引入通道分离技术自适应强调重要特征。HAM作为通用模块,在CIFAR-10、CIFAR-100和STL-10数据集上实现了SOTA级别的分类性能。

论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0031320322002667?via%3Dihub

方法

通道注意力如下图:
在这里插入图片描述
输入特征首先经过两个分支的不同池化得到和,这与CBAM中保持一致,平均池化可以学习到目标物体的程度信息,最大池化则能够学习到物体的判别性特征,同时使用的话,最大池化编码目标的显著性信息,能够很好地弥补平均池化编码的全局信息。

空间注意模块如下图:

在这里插入图片描述
输入特征为经过通道注意模块的通道细化特征,其中每个通道都具有不同的重要性(在数值表现上,通道注意张量中重要的通道权重更大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值