YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

该博客介绍了通过引入混合注意力机制(HAM)改进YoloV8的三种策略。首先,在输出的FeatureMap上应用注意力,其次在Neck的上采样区域加入HAM,最后在Head层集成HAM。通过修改代码并训练,实验结果显示这些改进提升了模型的检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

HAM通过快速一维卷积来缓解通道注意机制的负担,并引入通道分离技术自适应强调重要特征。HAM作为通用模块,在CIFAR-10、CIFAR-100和STL-10数据集上实现了SOTA级别的分类性能。

论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0031320322002667?via%3Dihub

方法

通道注意力如下图:
在这里插入图片描述
输入特征首先经过两个分支的不同池化得到和,这与CBAM中保持一致,平均池化可以学习到目标物体的程度信息,最大池化则能够学习到物体的判别性特征,同时使用的话,最大池化编码目标的显著性信息,能够很好地弥补平均池化编码的全局信息。

空间注意模块如下图:

在这里插入图片描述
输入特征为经过通道注意模块的通道细化特征,其中每个通道都具有不同的重要性(在数值表现上,通道注意张量中重要的通道权重更大

### HAM注意力机制在小目标检测中的应用 对于小目标检测而言,混合注意力机制HAM, Hybrid Attention Mechanism)能够显著提升模型对细节特征的关注度。具体来说,在处理图像数据时,通过Heatmap可视化方法可以直观展示不同注意力机制下模型关注的重区域[^1]。 #### 方法概述 HAM融合了空间注意力与通道注意力的优势,旨在增强网络对重要信息的理解能力。针对小物体识别困难这一挑战,该机制允许更精准地定位微小且密集分布的目标对象。其核心在于引入多尺度感受野以及跨层连接设计,从而有效捕捉局部细微变化并抑制背景噪声干扰。 #### 实现过程 以下是基于PyTorch框架的一个简化版HAM模块实现: ```python import torch.nn as nn import torch class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) scale = torch.cat([avg_out, max_out], dim=1) scale = self.conv1(scale) return x * self.sigmoid(scale) class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) * x class HAMBlock(nn.Module): def __init__(self, channel_in, spatial_kernel=7): super(HAMBlock, self).__init__() self.channel_attention = ChannelAttention(channel_in) self.spatial_attention = SpatialAttention(spatial_kernel) def forward(self, x): ca_output = self.channel_attention(x) sa_output = self.spatial_attention(ca_output) return sa_output ``` 上述代码定义了一个简单的`HAMBlock`类,它包含了两个子组件——`ChannelAttention``SpatialAttention`。这两个部分共同作用于输入张量`x`之上,最终输出经过双重注意调整后的特征映射。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值