YoloV8改进策略:Block改进|轻量级的Mamba打造优秀的YoloV8|即插即用,简单易懂|附Block结构图|检测、分割、关键点均适用(独家原创)

介绍了一种基于轻量级Mamba的改进版UNet——LightM-UNet,适用于医学图像分割。模型在减少参数和计算成本的同时,实现了与现有先进方法相媲美的性能。论文详细阐述了LightM-UNet的架构,包括RVM层和解码器块,以及其在实际医疗环境中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

无Mamba不狂欢,今天给大家带来一个基于轻量级Mamba的改进。模块简单易懂,即插即用! 带领大家去征服更高的领域。
在这里插入图片描述

论文:《LightM-UNet:Mamba 辅助的轻量级 UNet 用于医学图像分割》

https://arxiv.org/pdf/2403.05246.pdf
UNet及其变体在医学图像分割中得到了广泛应用。然而,这些模型,特别是基于Transformer架构的模型,由于参数众多和计算负载大,使得它们不适合用于移动健康应用。最近,以Mamba为代表的状态空间模型(SSMs)已成为CNN和Transformer架构的有力竞争者。在此基础上,我们采用Mamba作为UNet中CNN和Transformer的轻量级替代方案,旨在解决真实医疗环境中计算资源限制带来的挑战。为此,我们引入了轻量级Mamba UNet(LightM-UNet),将Mamba和UNet集成在一个轻量级框架中。具体来说,LightM-UNet以纯Mamba的方式利用残差视觉Mamba层来提取深层语义特征并建模长距离空间依赖关系&

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值