YoloV8改进策略:Block改进|轻量级的Mamba打造优秀的YoloV8|即插即用,简单易懂|附Block结构图|检测、分割、关键点均适用(独家原创)

介绍了一种基于轻量级Mamba的改进版UNet——LightM-UNet,适用于医学图像分割。模型在减少参数和计算成本的同时,实现了与现有先进方法相媲美的性能。论文详细阐述了LightM-UNet的架构,包括RVM层和解码器块,以及其在实际医疗环境中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

无Mamba不狂欢,今天给大家带来一个基于轻量级Mamba的改进。模块简单易懂,即插即用! 带领大家去征服更高的领域。
在这里插入图片描述

论文:《LightM-UNet:Mamba 辅助的轻量级 UNet 用于医学图像分割》

https://arxiv.org/pdf/2403.05246.pdf
UNet及其变体在医学图像分割中得到了广泛应用。然而,这些模型,特别是基于Transformer架构的模型,由于参数众多和计算负载大,使得它们不适合用于移动健康应用。最近,以Mamba为代表的状态空间模型(SSMs)已成为CNN和Transformer架构的有力竞争者。在此基础上,我们采用Mamba作为UNet中CNN和Transformer的轻量级替代方案,旨在解决真实医疗环境中计算资源限制带来的挑战。为此,我们引入了轻量级Mamba UNet(LightM-UNet),将Mamba和UNet集成在一个轻量级框架中。具体来说,LightM-UNet以纯Mamba的方式利用残差视觉Mamba层来提取深层语义特征并建模长距离空间依赖关系&

### YOLOv8改进策略及其在Mamba环境下的优化 YOLOv8作为一种先进的目标检测算法,其性能可以通过多种方式得到提升。对于希望在mamba环境中进行优化的情况,可以考虑以下几个方面: #### 1. 使用StarNet增强模型架构 通过引入StarNet来改进步骤YOLOv8的结构能够显著提高模型的表现[^1]。具体来说,这种改进不仅限于增加新的层或者调整现有层之间的连接模式;更重要的是利用星形操作符替换传统卷积核,从而更好地捕捉图像特征。 #### 2. 调整训练参数设置 为了使YOLOv8适应不同的硬件条件以及特定应用场景的需求,在mamba环境下应该仔细配置训练过程中的各项参数。这包括但不限于选择合适的批量大小(batch size),设定适当的学习率调度方案(learning rate schedule),以及决定总的迭代次数(training epochs)[^2]。 #### 3. 应用混合精度训练(Half Precision Training, HPT) 鉴于现代GPU支持半精度浮点数运算(FP16),可以在不影响最终效果的前提下大幅减少内存占用并加速计算速度。因此建议开启HPT选项,并确保所使用的框架版本兼容此特性。 #### Python代码示例:加载预训练权重文件并在指定设备上执行预测任务 ```python from ultralytics import YOLO if __name__ == '__main__': # 加载自定义训练好的最佳权重文件 model = YOLO('runs/detect/train/weights/best.pt') # 对给定路径下的图片资源实施推理操作,保存结果至磁盘 results = model.predict( source="ultralytics/assets", device='cuda:0', save=True ) print(results) ``` 上述代码片段展示了如何基于`ultralytics`库快速搭建起一套完整的YOLOv8预测流程。值得注意的是,这里特别指定了CUDA设备编号(`device='cuda:0'`)以便充分利用图形处理器的强大算力[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值