摘要
本文使用重参数的Block替换YoloV9中的RepNBottleneck,GFLOPs从239降到了227;同时,map50从0.989涨到了0.99(重参数后的结果)。
改进方法简单,只做简单的替换就行,即插即用,非常推荐!
论文翻译:《用于实时语义分割的可重参数化双分辨率网络》
https://arxiv.org/pdf/2406.12496
语义分割在自动驾驶和医学图像等应用中发挥着关键作用。尽管现有的实时语义分割模型在准确性和速度之间取得了令人称赞的平衡,但其多路径块仍然影响着整体速度。为了解决这个问题,本研究提出了一种专门用于实时语义分割的重参数化双分辨率网络(RDRNet)。具体来说,RDRNet采用了一种双分支架构,在训练过程中使用多路径块,并在推理过程中将它们重参数化为单路径块,从而同时提高了准确性和推理速度。此外,我们还提出了重参数化金字塔池化模块(RPPM),以增强金字塔池化模块的特征表示能力,同时不增加其推理时间。在Cityscapes、CamVid和Pascal