YoloV10的改进策略:下采样改进|集成GCViT的Downsampler模块实现性能显著提升|即插即用

摘要

随着深度学习在计算机视觉领域的广泛应用,目标检测任务成为了研究热点之一。YoloV10作为实时目标检测领域的领先模型,凭借其高效性与准确性赢得了广泛的关注。然而,为了进一步提升YoloV10的性能,特别是在特征提取与下采样过程中的信息保留能力,我们引入了来自GCViT(Global Context Vision Transformers)模型中的Downsampler模块。本文将详细阐述这一改进方法,并探讨其带来的显著优势。

Downsampler模块的引入

在YoloV10的原有架构中,下采样主要通过卷积层配合步长(stride)实现,这种方式虽然简单有效,但在特征提取过程中可能会损失部分重要信息。为了克服这一缺陷,我们借鉴了GCViT模型中的Downsampler模块,该模块通过融合MBConv(MobileNetV2中的Inverted Residual Block)与深度可分离卷积(Depthwise Separable Convolution)、Squeeze-and-Excitation(SE)块以及最大池化(Max Pooling)等技术,有效提升了特征提取与下采样的性能。

改进优点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值