摘要
论文链接:https://arxiv.org/pdf/2404.07846
Dilated G-CSA(Dilated Grouped Channel-Wise Self-Attention)是Transformer-based Blind-Spot Network (TBSN)中的一个关键模块,旨在增强图像去噪任务中的特征提取能力。该模块通过分组的方式对通道进行自注意力计算,同时引入扩张卷积的概念,以避免在多尺度架构中可能出现的盲点信息泄露。
设计原理
-
分组通道自注意力:Dilated G-CSA将输入特征的通道分为多个组,并在每个组内独立计算通道注意力。这种设计的目的是控制每个组的通道数,使其小于空间分辨率,从而避免在多尺度特征中出现的盲点信息泄露。通过这种方式,Dilated G-CSA能够有效地捕捉通道间的依赖关系,同时保持对空间信息的保护。
-
扩张卷积的引入:扩张卷积(Dilated Convolution)用于增加感受野而不增加计算量。通过在通道注意力计算中引入扩张卷积,Dilat