Yolo11改进策略:Block改进|Dilated G-CSA,多头扩张卷积的自注意力模块,增强对全局上下文信息的感知能力|即插即用

摘要

论文链接:https://arxiv.org/pdf/2404.07846
Dilated G-CSA(Dilated Grouped Channel-Wise Self-Attention)是Transformer-based Blind-Spot Network (TBSN)中的一个关键模块,旨在增强图像去噪任务中的特征提取能力。该模块通过分组的方式对通道进行自注意力计算,同时引入扩张卷积的概念,以避免在多尺度架构中可能出现的盲点信息泄露。
在这里插入图片描述

设计原理

  1. 分组通道自注意力:Dilated G-CSA将输入特征的通道分为多个组,并在每个组内独立计算通道注意力。这种设计的目的是控制每个组的通道数,使其小于空间分辨率,从而避免在多尺度特征中出现的盲点信息泄露。通过这种方式,Dilated G-CSA能够有效地捕捉通道间的依赖关系,同时保持对空间信息的保护。

  2. 扩张卷积的引入:扩张卷积(Dilated Convolution)用于增加感受野而不增加计算量。通过在通道注意力计算中引入扩张卷积,Dilat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值