一、LinkedList概述
1.1 表ADT
介绍ArrayList集合和LinkedList集合之前我们必须要对表ADT(抽象数据类型)有一定的了解。
抽象数据类型(ADT)
抽象数据类型是带有一组操作的一些对象的集合。
表ADT
我们将处理形如A0,A1,A2,……,An-1的一般的表。我们说这个表的大小是N。大小为0的特殊的表称为空表。
对于除空表外的任何表,我们说Ai后继Ai-1并称Ai-1前驱Ai。
表ADT的两种实现方式
表的数组实现
对于表的所有操作都可以通过使用数组来实现。
表的链表实现
链表由一系列节点组成,这些节点不必在内存中相连。每个节点均还有表元素和到包含该元素后继元的节点的链。
表的链表实现
为了避免插入和删除的线性开销,我们需要保证表可以不连续存储,否则表的每个部分都可能需要整体移动。
链表有一系列节点组成,这些节点不必在内存中相连。每个节点均含有表元素和到包含该元素后继元的节点的链(link)。我们称之为next链。最后一个单元的next链引用null。
如果每个节点持有一个指向它在表中的前去节点的链,我们称之为双链表。
在java语言中,对于ListADT的链表实现中最为流行的就是LinkedList类。
1.2 LinkedList类
在实现中采用双链表数据结构。对顺序访问进行了优化,向List中插入和删除元素的速度较快,随机访问则相对较慢。随机访问是指检索位于特定索引位置的元素。LinkedList单独具有addFirst()、addLast()、getFirst()、getLast()、removeFirst()、removeLast()方法、这些方法使得LinkedList可以作为堆栈,队列,双向队列使用。
LinkedList的最基础的存储单元–Node
private static class Node<E> {
E item; //value
Node<E> next; //指向下一个节点的指针
Node<E> prev;//指向上一个节点的指针
//构造方法
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
图示:
prev:指向前驱元节点的指针,item:存储数据,next:指向后继元节点的指针
链表中的每一个Node的存储是不连续的。
LinkedList集合的结构图:
二、LinkedList源码
2.1 LinkedList继承结构和层级关系
源码代码:
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
图示:
- LinkedList<>:表示linkedlist支持泛型
- extends AbstractSequentialList:这个类提供了List的一个骨架实现接口,以尽量减少实现此接口所需的工作量由“顺序访问”数据存储(如链接列表)支持。对于随机访问数据(如数组),应使用AbstractList优先于此类。
- implements AbstractSequentialList:意味着LinkedList元素是有序的,可以重复的,可以有null元素的集合.
- implements Deque:Deque是Queue的子接口,Queue是一种队列形式,而Deque是双向队列,它支持从两个端点方向检索和插入元素.
- implements Cloneable:实现了Cloneable接口,标识着可以它可以被复制.注意,ArrayList里面的clone()复制其实是浅复制
- implements Serializable:标识着集合可被序列化。
**
2.2 LinkedList的属性
transient int size = 0;
transient Node<E> first;
transient Node<E> last;
size:链表的长度
first:链表的头节点
last:链表的尾节点
2.3 LinkedList的构造方法
//无参构造
public LinkedList() {
}
//构造列表通过指定的集合
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
ArrayList拥有三个构造方法。而LinkedList只有两个构造方法。
思考:为什么LinkedList没有提供public LinkedList(int initialCapacity)这种构建指定大小列表的构造方式?
因为ArrayList有这种构造方法public ArrayList(int initialCapacity),ArrayList提供这种构造方法的好处在于在知道需要多大的空间的情况下,可以按需构造列表,无需浪费多余的空间和不必要的生成新数组的操作.而LinkedList可以很轻松动态的增加元素(O(1)),所以没必要一开始就构造一个有很多元素的列表,到时需要的时候再按需加上去就行了.
2.4 LinkedList的主要方法
add(E e)方法
//在链表的尾部添加元素
public boolean add(E e) {
linkLast(e);
return true;
}
void linkLast(E e) {
final Node<E> l = last; //获取到未添加前链表的未节点
final Node<E> newNode = new Node<>(l, e, null); //调用构造方法创建一个以未节点为前驱元的新节点
last = newNode; //更新last
//如果链表为空,新节点即为first
if (l == null)
first = newNode;
//如果链表不为空,添加前的未节点的next指向新节点
else
l.next = newNode;
//链表的大小加一
size++;
modCount++;
}
add(int index, E element)方法
//在指定位置上添加元素
public void add(int index, E element) {
//检查插入位置的索引的合理性
checkPositionIndex(index);
//如果插入位置是尾部,与add(E e)相同
if (index == size)
linkLast(element);
//如果不是在尾部插入,调用linkBefore
else
linkBefore(element, node(index));
}
//检查index与size的关系,
private void checkPositionIndex(int index) {
//调用isPositionIndex方法,方法如下,不做解释。
//如果不合理则抛出异常
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
//如果不尾部插入时,调用的linkBefore
//参数: e-要添加的元素 succ-添加前在index位置上的节点
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
//定义一个常量index位置节点的前驱元
final Node<E> pred = succ.prev;
//创建一个节点,前驱指向pred 后继指向succ
final Node<E> newNode = new Node<>(pred, e, succ);
//succ的前驱指向新节点
succ.prev = newNode;
//如果pred为空,即新节点为first
if (pred == null)
first = newNode;
//否则pred的后继指向新节点
else
pred.next = newNode;
size++;
modCount++;
}
//参数node(index)的方法。
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
get(int index)方法
//根据下标查找元素的数据
public E get(int index) {
//元素下标的合理性检查
checkElementIndex(index);
//返回数据
return node(index).item;
}
//检查元素下标的合理性
private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
//检查元素下标的合理性
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}
//根据下标拿到对应的节点
Node<E> node(int index) {
// assert isElementIndex(index);
//如果节点在链表的前半部分,在遍历前半部分
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
//如果在后半部分,遍历后半部分
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
remove(int index)方法
//根据下标删除对应的节点
public E remove(int index) {
//检查下标的合理性
checkElementIndex(index);
//将节点删除
return unlink(node(index));
}
//检查下标的合理性
private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
//将节点删除的具体方法
E unlink(Node<E> x) {
// assert x != null;
//将节点的数据赋值给element
final E element = x.item;
//节点的后继
final Node<E> next = x.next;
//节点的前驱
final Node<E> prev = x.prev;
//如果节点是frist,frist指向下一个节点
if (prev == null) {
first = next;
} else {
//如果不是frist,上一个节点的后继指向这个节点的后继元
prev.next = next;
//节点的前驱指向null
x.prev = null;
}
//如果节点是last,last指向节点的前驱元
if (next == null) {
last = prev;
} else {
//如果不是last,下一个节点的前驱指向这个节点的前驱元
next.prev = prev;
//节点的后继指向null
x.next = null;
}
//删除节点的值
x.item = null;
size--;
modCount++;
//返回删除的数据
return element;
}
clear()方法
//清空列表
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
//遍历链表的每一个节点,
for (Node<E> x = first; x != null; ) {
//删除链表的每一个节点
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
//将链表的first和last置空
first = last = null;
//将链表的size归零
size = 0;
modCount++;
}
** indexOf(Object o)方法**
//返回元素在链表的下标
public int indexOf(Object o) {
int index = 0;
//如果节点为空
if (o == null) {
//遍历查找
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
//如果节点不为空
for (Node<E> x = first; x != null; x = x.next) {
//遍历equls查找
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}