PyCharm中使用pip安装PyTorch(从0开始仅需两步)

无需 anaconda,只使用 pip 也可以在 PyCharm 集成环境中配置深度学习 PyTorch。
本文全部信息及示范来自 PyTorch 官网。

以防你是super小白:
PyCharm 中的命令是在 Python Terminal 中运行,界面左下角竖排图标第四个。

1. 安装前置包 numpy

pip install numpy

2. 安装 PyTorch

安装命令根据官网指示获取:
https://pytorch.org/get-started/locally/

举例:我的电脑为 Windows 系统,我决定使用 Pip 安装,在 Python 中使用,电脑无独立显卡(仅CPU),那么我的选择如下图所示:
在这里插入图片描述
复制最下面一行的命令,即:

pip3 install torch torchvision torchaudio

到 PyCharm 中运行。等待下载与安装,即可完成。

验证示例:

新建 .py 文件,输入:

import torch
x = torch.rand(5, 3)
print(x)

输出例如:

D:\etude\cs\python\pythonProjects\Mar22\.venv\Scripts\python.exe D:\etude\cs\python\pythonProjects\Mar22\.venv\test.py 
tensor([[0.3016, 0.0369, 0.9889],
        [0.1310, 0.4814, 0.9994],
        [0.2568, 0.5121, 0.1174],
        [0.3562, 0.0751, 0.1503],
        [0.2874, 0.3376, 0.6854]])

Process finished with exit code 0

即证明 PyTorch 安装成功。

好消息

目前 PyTorch 最新版 2.6 已经可以支持 Python 最新版 3.13
无心插柳柳成荫,在自作主张升级了最新版 Python 并顺利安装 PyTorch 后,发现之前很多人控诉版本不适配的问题。
在这里插入图片描述

### 如何在 PyCharm使用 pip 安装 PyTorch #### 配置 Python 解释器 为了在 PyCharm 中成功安装 PyTorch,首先要确保已正确设置项目的 Python 解释器。可以通过创建一个新的虚拟环境或将现有环境关联到项目来完成此操作[^2]。 #### 使用 Pip 安装 PyTorch PyTorch安装方式取决于目标硬件支持情况(CPU 或 GPU)。以下是两种主要场景下的具体方法: 1. **对于支持 CPU 的设备** 如果计算机未配备 NVIDIA 显卡或 CUDA 不可用,则可通过以下命令安装适用于 CPU 的 PyTorch 版本: ```bash pip install torch torchvision torchaudio -i https://pypi.doubanio.com/simple/ ``` 这里 `-i` 参数指定了一个国内镜像源地址 `https://pypi.doubanio.com/simple/`,能够显著加快依赖项的下载速度[^4]。 2. **针对具备 CUDA 支持的 GPU 设备** 若希望利用 GPU 加速计算性能,并且系统已经安装了兼容版本的 CUDA 工具链,则推荐直接访问官方文档获取适配当前系统的安装指令。通常情况下,可以从 PyTorch 官网生成对应于特定操作系统、CUDA 版本及 Python 环境的定制化安装脚本并执行之[^1]。要注意的是,在这种情形下并不建议额外附加任何第三方镜像站点链接至原生命令字符串之中,以免引发潜在冲突问题从而降低整体效率表现。 #### 示例代码片段展示如何验证安装是否成功 一旦上述任一路径顺利完成之后,可以在新建文件内编写如下测试程序以确认所期望的功能模块已被正常加载进来: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' tensor_example = torch.tensor([1, 2, 3], dtype=torch.float32).to(device) print(tensor_example) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值