实习日报1(券商金工组)

本文记录了在券商金工组实习期间进行滚动ROE回测的过程。在任务中,面临如何进行多条件筛选及理解DataFrame的values与_values区别的技术挑战。通过乘法运算实现数据交集筛选,并探讨了如何处理缺失值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天收到一个任务,老板要求对滚动ROE进行一个回测,然后贴心地把清理好的数据给了我。然后我就开工了。
在操作中,遇到了几个技术难题。首先得筛选出每个月ROE、股价收益率以及股票On the List的三重筛选。由于直接用and表示交集不太好,我没想出来,然后我就用一个乘法表示交集了。
其次,要注意DataFrame的values和_values有所不同。values会把缺失值省去,而_values不会,这个可以进行一定的操作。

import pandas as pd
import numpy as np
Roe=pd.read_csv("ROE_TTM.csv",index_col=0)
ontheList = pd.read_csv("Onthelist.csv",index_col=0)
Price=pd.read_csv("Price.csv",index_col=0)
Result=np.zeros(len(Roe)-2,dtype=float
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值