1、有些数字的立方的末尾正好是该数字本身,比如1(立方是1)、4(立方是64)、5(立方是125),还有6、9、24、25…。题目输入一个N(已保证1<=N<=10000),请计算输出1到N之间所有的立方尾不变数及个数。
输入格式
输入为一行,是一个大于等于1小于等于10000的正整数N。
输出格式
输出为两行:第一行是以空格分开的一些立方尾不变数,这些数处于[1,N]区间内(每个数字末尾有一个空格);第二行是一个整数,为[1,N]区间内立方尾不变数字的个数。
N=eval(input())
num=0
for i in range(1,N+1):
if 1<=i<10:
a=i**3%10
if i==a:
num+=1
print(i,end=" ")
elif 10<=i<100:
b=i**3%100
if i==b:
num+=1
print(i,end=" ")
elif 100<=i<1000:
c=i**3%1000
if i==c:
num+=1
print(i,end=" ")
elif 1000<=i<=10000:
d=i**3%10000
if i==d:
num+=1
print(i,end=" ")
print()
print(num)
输出结果:
150
1 4 5 6 9 24 25 49 51 75 76 99 125
13
***Repl Closed***
2、设计一个用二分法计算一个大于或等于 1 的实数 n 的平方根的函数sqrt_binary(n),计算精度控制在计算结果的平方与输入的误差不大于1e-6。
注:初始区间取[0,n]
输入格式
输入一个实数 n(大于或等于1)
输出格式
第一行输出用自己设计的函数计算得到的平方根
第二行输出用math库开平方函数计算得到的平方根
import math
n=eval(input())
def sqrt_binary(n):
low=0
up=n
a=1e-6
while True:
mid=(low+up)/2
if abs(mid**2-n)<a:
return mid
else:
if mid**2>n:
up=mid
if mid**2<n:
low=mid
print(sqrt_binary(n))
print(math.sqrt(n))
输出结果:
5
2.2360679507255554
2.23606797749979
***Repl Closed***
3、恺撒密码 A
凯撒密码是古罗马凯撒大帝用来对军事情报进行加解密的算法,它采用了替换方法对信息中的每一个英文字符循环替换为字母表序列中该字符后面的第三个字符,即,字母表的对应关系如下:
原文:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
密文:D E F G H I J K L M N O P Q R S T U V W X Y Z A B C