算法基本知识铺垫
有些人可能不知道什么是稳定排序、原地排序、时间复杂度、空间复杂度,我这里先简单解释一下:
1、稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 仍然在 b 的前面,则为稳定排序。
2、非稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 可能不在 b 的前面,则为非稳定排序。
3、原地排序:原地排序就是指在排序过程中不申请多余的存储空间,只利用原来存储待排数据的存储
空间进行比较和交换的数据排序。
4、非原地排序:需要利用额外的数组来辅助排序。
5、时间复杂度:一个算法执行所消耗的时间。
6、空间复杂度:运行完一个算法所需的内存大小
排序中的稳定排序
冒泡排序(bubble sort) — O(n2)
插入排序 (insertion sort)— O(n2)
归并排序 (merge sort)— O(n log n)
排序中的非稳定排序
面试考察中一般问快排,选择,希尔,堆这几种非稳定排序
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n)
堆排序 (heapsort)— O(n log n)
快速排序 (quicksort)— O(n log n)
冒泡排序:
冒泡排序法的各个计算步骤中, 数组也分成 “已排序部分” 和 “未排序部分”。
冒泡排序法
► 重复执行下述处理,直到数组中不包含顺序相反的相邻元素
1 . 从数组末尾开始依次比较相邻两个元素,如果大小关系相反则交换位置。
以 数 组 {5,3,2,4, 1 } 为例,我们对其使用冒泡排序法时,排序过程如图下图所示:
代码:
设置标识flag
,用以标识每一趟是否发生了交换,若不发生交换,则说明有序,无需再行比较。这一改进可以避免已经有序情况下无意义的判断。
// 冒泡排序
void bubbleSort(int arr[], int n) {
bool flag = 1;
for (int i = 0; flag; i++) {
flag = 0;
for (int j = n - 1; j >= i + 1; j--) {
if (arr[j] < arr[j - 1]) {
swap(arr[j], arr[j - 1]);
flag = 1;
}
}
}
}
插入排序 :
插入排序法在排序过程中,会将整个数组分成 “已排序部分” 和 “未排序部分”。
插入排序法
► 将开头元素视作已排序
► 执行下述处理,直至未排序部分消失
1.取出未排序部分的开头元素赋给变量v。
2.在已排序部分,将所有比 v 大的元素向后移动一个单位。
3.将已取出的元素 v 插入空位。
举个例子,我们对数组 {8,3,1,5,2,1 } 进行插入排序时,整体流程如图下图 所示:
代码:
//插入排序
void insertionSort(int arr[], int n) {
int j, v;
for (int i = 0; i < n; i++) {
v = arr[i];
j = i - 1;
while (j >= 0 && arr[j] > v) {
arr[j + 1] = arr[j];
j--;
}
arr[j +