1067 Sort with Swap(0, i)
分析:效率最高的交换是a[0]和a[a[0]]互相占据对方的位置,一次交换让两个失序数字回到正确的位置,这种情况只会发生在a[0]!=0的情况,若a[0]==0了,则要任何一个失序数字回到正确的位置都必须先swap(0,a[i]),再swap(a[0],a[a[0]]),while修正a[0]过程中至少保证一个数字回到正确的位置,让a[0]的数字回到正确的位置是效率最高交换的必要条件,所以能一直swap(a[0],a[a[0]])就一直循环。(贪心的思想)
先交换a[0]上出现的元素到正确的位置上直到a[0]==0,再把当前的未正确的放置的元素a[i]和0交换,将在第i+1次for循环修正a[0]时把a[i]交换到正确的位置,则第i+1次for循环结束时保证a[1]-a[i]元素放在正确的位置上,设遍历到最后一个失序的数为a[i+1],即a[1]至a[i]和a[i+2]至a[n-1]都有序,只可能是a[i+1]和a[0]互相占据对方的位置,即a[0]=i+1,a[i+1]=0,则在while循环修正a[0]时放到正确的位置上
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int main(){
int n,cnt=0;
cin>>n;
vector<int> a(n);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
for(int i = 1; i < n; i++) {
if(i != a[i]) { //当前元素未在正确的位置上
while(a[0] != 0) { //不断放置交换过程中出现在哨兵位置的非0数到正确的位置,直到a[0]==0
swap(a[0],a[a[0]]);
cnt++;
}
if(i != a[i]) { //把当前的未正确的放置的元素和0交换,将在第i+1次for循环修正a[0]时把a[i]交换到正确的位置
swap(a[0],a[i]);
cnt++;
}//第i+1次for循环结束时保证a[1]-a[i]元素放在正确的位置上
}
}
cout << cnt;
system("pause");
return 0;
}