概率论知识点

基础知识

文章当中的图片截图来自【可能是全网最好的《概率统计》期末速成,2小时不到冲刺60分,概率论与数理统计】

概率的性质

加法公式:

  • 对于任意事件A、B,有 P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\bigcup{B})=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
  • 对于任意事件A、B、C,有 P ( A ⋃ B ⋃ C ) = P ( A ) + P ( B ) + ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) P(A\bigcup{B}\bigcup{C})=P(A)+P(B)+(C)-P(AB)-P(BC)-P(AC)+P(ABC) P(ABC)=P(A)+P(B)+(C)P(AB)P(BC)P(AC)+P(ABC)
  • 若A、B、C互不相容,则 P ( A ⋃ B ⋃ C ) = P ( A ) + P ( B ) + P ( C ) P(A\bigcup{B}\bigcup{C})=P(A)+P(B)+P(C) P(ABC)=P(A)+P(B)+P(C)

减法公式:

  • 对于事件A、B,有 P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB)
  • B ⊂ A B \sub A BA,则有 P ( B ) ≤ P ( A ) P(B)\leq{P(A)} P(B)P(A),且 P ( A − B ) = P ( A ) − P ( B ) P(A-B)=P(A)-P(B) P(AB)=P(A)P(B)

对立事件概率:

  • P ( A ‾ ) = 1 − P ( A ) P(\overline{A})=1-P(A) P(A)=1P(A)

分配律:

  • P { ( A ⋃ B ) ⋂ C } = P { A C ⋃ B C } P\{(A\bigcup{B})\bigcap{C}\}=P\{AC\bigcup{BC}\} P{(AB)C}=P{ACBC}
  • P { ( A B ) ⋃ C } = P { ( A ⋃ C ) ⋂ ( B ⋃ C ) } P\{(AB)\bigcup{C}\}=P\{(A\bigcup{C})\bigcap{(B\bigcup{C})}\} P{(AB)C}=P{(AC)(BC)}

对偶率:

  • P { A ⋃ B ‾ } = P { A ‾ ⋂ B ‾ } P\{\overline{A\bigcup{B}}\}=P\{\overline{A}\bigcap{\overline{B}}\} P{AB}=P{AB}
  • P { A ⋂ B ‾ } = P { A ‾ ⋃ B ‾ } P\{\overline{A\bigcap{B}}\}=P\{\overline{A}\bigcup{\overline{B}}\} P{AB}=P{AB}

条件概率

事件A发生的条件下,B发生的概率为 P ( B ∣ A ) = P ( A B ) P ( A ) P(B\vert{A})=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

P ( A ) > 0 P(A)>0 P(A)>0,则 P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B\vert{A})P(A) P(AB)=P(BA)P(A)

性质:

  • P ( B ‾ ∣ A ) = 1 − P ( B ∣ A ) = 1 − P ( A B ) P ( A ) P(\overline{B}\vert{A})=1-P(B\vert{A})=1-\frac{P(AB)}{P(A)} P(BA)=1P(BA)=1P(A)P(AB)
  • P ( B ⋃ C ∣ A ) = P ( B ∣ A ) + P ( C ∣ A ) − P ( B C ∣ A ) P(B\bigcup{C}\vert{A})=P(B\vert{A})+P(C\vert{A})-P(BC\vert{A}) P(BCA)=P(BA)+P(CA)P(BCA)

古典概型

若随机试验的样本空间 Ω \Omega Ω只有有限个样本点,且每个基本事件发生的可能性相等,则事件A发生的概率为
P ( A ) = A 中所含样本点 k Ω 中所有样本点数 n = k n C n m = n ! m ! ( n − m ) ! = C 7 4 = 7 × 6 × 5 × 4 × 3 × 2 × 1 4 × 3 × 2 × 1 × 3 × 2 × 1 P(A)=\frac{A中所含样本点k}{\Omega{中所有样本点数n}}=\frac{k}{n}\\ C^{m}_{n}=\frac{n!}{m!(n-m)!}=C^{4}_{7}=\frac{7\times6\times5\times4\times3\times2\times1}{4\times3\times2\times1\times3\times2\times1}\\ P(A)=Ω中所有样本点数nA中所含样本点k=nkCnm=m!(nm)!n!=C74=4×3×2×1×3×2×17×6×5×4×3×2×1

全概率与贝叶斯公式

image-20230201161633487

全概率公式:
P ( A ) = ∑ i = 1 n P ( A B i ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) 当所求事件 A 可以分成几种情况时, A 发生的概率就是这些情况对应的概率之和 P(A)=\sum^{n}_{i=1}{P(AB_{i})}=\sum^{n}_{i=1}{P(A\vert{B_{i}})P(B_{i})}\\ 当所求事件A可以分成几种情况时,A发生的概率就是这些情况对应的概率之和\\ P(A)=i=1nP(ABi)=i=1nP(ABi)P(Bi)当所求事件A可以分成几种情况时,A发生的概率就是这些情况对应的概率之和
贝叶斯公式:
P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) 如果 A 事件发生,判断是发生在哪个情况的时候,用贝叶斯公式 P(B_{i}\vert{A})=\frac{P(B_{i}A)}{P(A)}=\frac{P(A\vert{B_{i}})P(B_{i})}{\sum_{j=1}^{n}{P(A\vert{B_{j}})P(B_{j})}}\\ 如果A事件发生,判断是发生在哪个情况的时候,用贝叶斯公式\\ P(BiA)=P(A)P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)如果A事件发生,判断是发生在哪个情况的时候,用贝叶斯公式

事件的独立性

  • A和B独立
    P ( A B ) = P ( A ) ∗ P ( B ) P ( B ) = P ( B ∣ A )   ( P ( A ) > 0 ) P ( B ∣ A ) = P ( B ∣ A ‾ )   ( 0 < P ( A ) < 1 ) P(AB)=P(A)\ast{P(B)}\\ P(B)=P(B\vert{A})\space(P(A)>0)\\ P(B\vert{A})=P(B\vert{\overline{A}})\space(0<P(A)<1)\\ P(AB)=P(A)P(B)P(B)=P(BA) (P(A)>0)P(BA)=P(BA) (0<P(A)<1)

  • A和B相互独立,则A和 B ‾ \overline{B} B A ‾ \overline{A} A和B,

  • A ‾ \overline{A} A B ‾ \overline{B} B也相互独立

  • 若三个事件相互独立,则任意两个事件均满足上述性质;三个事件同时满足 P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C)

离散型随机变量分布律与分布函数

名称定义性质
分布律 P ( X = x k ) = p k   ( k = 1 , 2 , ⋯   ) P(X=x_{k})=p_{k}\space(k=1,2,\cdots) P(X=xk)=pk (k=1,2,) p k ≥ 0 , k = 1 , 2 , ⋯ ∑ p k = 1 p_{k}\geq0,{k=1,2,\cdots}\\\sum{p_{k}=1} pk0,k=1,2,pk=1
分布函数 F ( x ) = P ( X ≤ x ) = ∑ x k ≤ x p k F(x)=P(X\leq{x})=\sum_{x_{k}\leq{x}}p_{k} F(x)=P(Xx)=xkxpk 0 ≤ F ( x ) ≤ 1 F ( x ) 单调,不减 F ( x ) 定义域左闭右开 0\leq{F(x)}\leq1\\F(x)单调,不减\\F(x)定义域左闭右开 0F(x)1F(x)单调,不减F(x)定义域左闭右开
概率 P ( X ≤ a ) = F ( a ) P(X\leq{a})=F(a) P(Xa)=F(a) P ( X > a ) = 1 − F ( a ) P ( a < X ≤ b ) = F ( b ) − F ( a ) P(X>a)=1-F(a)\\P(a<X\leq{b})=F(b)-F(a) P(X>a)=1F(a)P(a<Xb)=F(b)F(a)
image-20230201170618893

二项分布和泊松分布

名称符号分布律含义
二项分布 B ( n , p ) B(n,p) B(n,p) P { X = k } = C n k p k q n − k ,   ( q = 1 − p , k = 0 , 1 , 2 , ⋯   ) P\{X=k\}=C_{n}^{k}{p^{k}q^{n-k}},\space(q=1-p,k=0,1,2,\cdots) P{X=k}=Cnkpkqnk, (q=1p,k=0,1,2,)n表示伯努利试验中A发生的次数 X ∼ B ( n , p ) X\sim{B(n,p)} XB(n,p) p p p表示每次试验中A发生的概率。
泊松分布 P ( λ ) P(\lambda) P(λ) P { X = k } = λ k e − λ k ! , ( λ > 0 , k = 0 , 1 , 2 , ⋯   ) P\{X=k\}=\frac{\lambda^{k}e^{-\lambda}}{k!},(\lambda>0,k=0,1,2,\cdots) P{X=k}=k!λkeλ,(λ>0,k=0,1,2,) X ∼ B ( n , p ) X\sim{B(n,p)} XB(n,p),当 n n n较大, p p p较小时, X X X近似服从 P ( n p ) P(np) P(np)

连续型随机变量分布函数的分布

名称定义性质
分布函数 F ( x ) = P ( X ≤ x ) = ∫ − ∞ x f ( t ) d t F(x)=P(X\leq{x})=\int_{-\infty}^{x}{f(t)dt} F(x)=P(Xx)=xf(t)dt 0 ≤ F ( x ) ≤ 1 F ( x ) 单调,不减 F ( x ) 定义域左闭右开 0\leq{F(x)}\leq1\\F(x)单调,不减\\F(x)定义域左闭右开 0F(x)1F(x)单调,不减F(x)定义域左闭右开
概率密度 f ( x ) , − ∞ < x < + ∞ f(x),-\infty<x<+\infty f(x),<x<+ f ( x ) ≥ 0 ∫ − ∞ + ∞ f ( x ) d x = 1 若 f ( x ) 连续,则 F ′ ( x ) = f ( x ) f(x)\geq0\\\int_{-\infty}^{+\infty}f(x)dx=1\\若f(x)连续,则F\prime(x)=f(x) f(x)0+f(x)dx=1f(x)连续,则F(x)=f(x)
概率 P ( X ) ≤ a = F ( a ) P(X)\leq{a}=F(a) P(X)a=F(a) P ( X = a ) = 0 P ( X < a ) = P ( X ≤ a ) = 1 − F ( a ) P ( a < X ≤ b ) = P ( a ≤ X ≤ b ) = P ( a < X < b ) = F ( b ) − F ( a ) P(X=a)=0\\P(X<a)=P(X\leq{a})=1-F(a)\\P(a<X\leq{b})=P(a\leq{X}\leq{b})=P(a<X<b)=F(b)-F(a) P(X=a)=0P(X<a)=P(Xa)=1F(a)P(a<Xb)=P(aXb)=P(a<X<b)=F(b)F(a)

分布函数法

通过给定的 Y = g ( X ) Y=g(X) Y=g(X)和关于 X X X的概率密度函数来求关于 Y Y Y的分布函数和概率密度
因为关于 X 的概率密度函数有范围,根据这个范围和 Y = g ( X ) 来求出 Y 的范围 F Y ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = P ( X ∈ G y ) = ∫ G y f X ( x ) d x 由上式得出,关于 Y 的分布函数,求导得到概率密度 因为关于X的概率密度函数有范围,根据这个范围和Y=g(X)来求出Y的范围\\ F_{Y}(y)=P(Y\leq{y})=P(g(X)\leq{y})=P(X\in{G_{y}})=\int_{G_{y}}{f_{X}(x)dx}\\ 由上式得出,关于Y的分布函数,求导得到概率密度 因为关于X的概率密度函数有范围,根据这个范围和Y=g(X)来求出Y的范围FY(y)=P(Yy)=P(g(X)y)=P(XGy)=GyfX(x)dx由上式得出,关于Y的分布函数,求导得到概率密度
image-20230204101601694

image-20230204101618274

均匀分布

均匀分布 ⋃ ( a , b ) \bigcup(a,b) (a,b)的概率密度函数为:
f ( x ) = { 0 , 其他 1 b − a , a < x < b f(x)=\{^{\frac{1}{b-a},a<x<b}_{0,其他} f(x)={0,其他ba1,a<x<b
image-20230203084521697

正态分布

正态分布 N ( u , σ 2 ) N(u,\sigma^{2}) N(u,σ2)的概率密度函数为:
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , ( − ∞ < x < + ∞ ) f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}},(-\infty<x<+\infty) f(x)=2π σ1e2σ2(xμ)2,(<x<+)
image-20230203094200028

μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1时,称作标准正态分布,记作 N ( 0 , 1 ) N(0,1) N(0,1)

其分布函数为 Φ ( x ) = P ( X ≤ x ) \Phi(x)=P(X\leq{x}) Φ(x)=P(Xx)

显然, Φ ( x ) + Φ ( − x ) = 1 \Phi(x)+\Phi(-x)=1 Φ(x)+Φ(x)=1

image-20230203094503876

X ∼ N ( μ , σ 2 ) X\sim{N(\mu,\sigma^{2})} XN(μ,σ2),则 X − μ σ ∼ N ( 0 , 1 ) \frac{X-\mu}{\sigma}\sim{N(0,1)} σXμN(0,1)

其分布函数可表示为:
F ( x ) = P ( X ≤ x ) = P ( X − μ σ ≤ x − μ σ ) = Φ ( x − μ σ ) F(x)=P(X\leq{x})=P(\frac{X-\mu}{\sigma}\leq{\frac{x-\mu}{\sigma}})=\Phi(\frac{x-\mu}{\sigma}) F(x)=P(Xx)=P(σXμσxμ)=Φ(σxμ)
image-20230203100714498

离散型随机变量函数的分布

X X X为一维离散型随机变量,其分布率为

X X X P P P
x 1 x_{1} x1 p 1 p_{1} p1
x 2 x_{2} x2 p 2 p_{2} p2
⋯ \cdots ⋯ \cdots

那么函数 Y = g ( X ) Y=g(X) Y=g(X)的分布律就是

g ( X ) g(X) g(X) P P P
g ( x 1 ) g(x_{1}) g(x1) p 1 p_{1} p1
g ( x 2 ) g(x_{2}) g(x2) p 2 p_{2} p2
⋯ \cdots ⋯ \cdots
image-20230203100642756

二维离散型随机变量的分布

X X X Y Y Y P ( X i Y j ) P(X_{i}Y_{j}) P(XiYj) P ( X = x i ) P(X=x_{i}) P(X=xi) P ( Y = y j ) P(Y=y_{j}) P(Y=yj)
x 1 x_{1} x1y1 P 11 P_{11} P11 P ( x 1 ) = P 11 + P 12 P(x_{1})=P_{11}+P_{12} P(x1)=P11+P12
x 1 x_{1} x1 y 2 y_{2} y2 P 12 P_{12} P12 P ( y 2 ) = P 12 + P 22 P(y_{2})=P_{12}+P_{22} P(y2)=P12+P22
x 2 x_{2} x2 y 1 y_{1} y1 P 21 P_{21} P21 P ( y 1 ) = P 11 + P 21 P(y_{1})=P_{11}+P_{21} P(y1)=P11+P21
x 2 x_{2} x2 y 2 y_{2} y2 P 22 P_{22} P22 P ( x 2 ) = P 21 + P 22 P(x_{2})=P_{21}+P_{22} P(x2)=P21+P22
⋯ \cdots ⋯ \cdots P ⋯ P_{\cdots} P ∑ P ( X = x i ) \sum{P(X=x_{i})} P(X=xi) ∑ P ( Y = y j ) \sum{P(Y=y_{j})} P(Y=yj)

两者概率总和结果为 1 ∑ P ( X = x i ) + ∑ P ( Y = y j ) = 1 X 和 Y 相互独立要满足,当 i j 取任意数字只要等于就相互独立 P ( X = x i , Y = y j ) = P ( X = x i ) ⋅ P ( Y = y j ) , ( 任意的 i , j = 1 , 2 , 3 , 4 ⋯   ) 两者概率总和结果为1\\ \sum{P(X=x_{i})}+\sum{P(Y=y_{j})}=1\\ X和Y相互独立要满足,当ij取任意数字只要等于就相互独立\\ P(X=x_{i},Y=y_{j})=P(X=x_{i})\cdot{P(Y=y_{j})},(任意的i,j=1,2,3,4\cdots) 两者概率总和结果为1P(X=xi)+P(Y=yj)=1XY相互独立要满足,当ij取任意数字只要等于就相互独立P(X=xi,Y=yj)=P(X=xi)P(Y=yj),(任意的i,j=1,2,3,4)

二维连续型随机变量的分布

联合分布函数: F ( x , y ) = P { X ≤ x , Y ≤ y } = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v 联合概率密度满足: f ( x , y ) ≥ 0 ; ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 边缘概率密度: f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y ; f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x ; 条件概率密度: f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) ; f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) X 和 Y 相互独立 ⟺ f ( x , y ) = f X ( x ) f Y ( y ) 联合分布函数:F(x,y)=P\{X\leq{x},Y\leq{y}\}=\int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)dudv\\ 联合概率密度满足:f(x,y)\geq{0};\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy=1\\ 边缘概率密度:f_{X}(x)=\int_{-\infty}^{+\infty}f(x,y)dy;f_{Y}(y)=\int_{-\infty}^{+\infty}f(x,y)dx;\\ 条件概率密度:f_{Y\vert{X}}(y\vert{x})=\frac{f(x,y)}{f_{X}(x)};f_{X\vert{Y}}(x\vert{y})=\frac{f(x,y)}{f_{Y}(y)}\\ X和Y相互独立\Longleftrightarrow{f(x,y)=f_{X}(x)f_{Y}(y)} 联合分布函数:F(x,y)=P{Xx,Yy}=xyf(u,v)dudv联合概率密度满足:f(x,y)0;++f(x,y)dxdy=1边缘概率密度:fX(x)=+f(x,y)dy;fY(y)=+f(x,y)dx;条件概率密度:fYX(yx)=fX(x)f(x,y);fXY(xy)=fY(y)f(x,y)XY相互独立f(x,y)=fX(x)fY(y)

离散型随机变量函数的分布

函数 U = g ( X , Y ) U=g(X,Y) U=g(X,Y)的分布律为 P { U = k } = P { g ( X , Y ) = k } P\{U=k\}=P\{g(X,Y)=k\} P{U=k}=P{g(X,Y)=k}

连续型随机变量函数的分布

Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的概率密度函数的步骤为:(分布函数法)

  1. 先求 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的分布函数:
    F ( z ) = P ( Z ≤ z ) = P ( g ( X , Y ) ≤ z ) = P ( ( X , Y ) ∈ G z ) = ∬ G z f ( x , y ) d x d y F(z)=P(Z\leq{z})=P(g(X,Y)\leq{z})=P((X,Y)\in{G_{z}})=\iint_{G_{z}}{f(x,y)dxdy} F(z)=P(Zz)=P(g(X,Y)z)=P((X,Y)Gz)=Gzf(x,y)dxdy

  2. 求导得到 Z Z Z的概率密度函数: f ( z ) = F ′ ( z ) f(z)=F\prime(z) f(z)=F(z)

X , Y X,Y X,Y相互独立,其分布函数分别为 F X ( x ) F_{X}(x) FX(x) F Y ( y ) F_{Y}(y) FY(y),则 Z = m a x ( X , Y ) Z=max(X,Y) Z=max(X,Y)的分布函数为:
F Z ( z ) = P ( m a x ( X , Y ) ≤ z ) = P ( X ≤ z , Y ≤ z ) = P ( X ≤ z ) P ( Y ≤ z ) = F X ( z ) F Y ( z ) \begin{aligned} F_{Z}(z)=P(max(X,Y)\leq{z})&=P(X\leq{z},Y\leq{z})\\ &=P(X\leq{z})P(Y\leq{z})\\ &=F_{X}(z)F_{Y}(z) \end{aligned} FZ(z)=P(max(X,Y)z)=P(Xz,Yz)=P(Xz)P(Yz)=FX(z)FY(z)
X , Y X,Y X,Y相互独立,其分布函数分别为 F X ( x ) F_{X}(x) FX(x) F Y ( y ) F_{Y}(y) FY(y),则 Z = m i n ( X , Y ) Z=min(X,Y) Z=min(X,Y)的分布函数为:
F Z ( z ) = P ( m i n ( X , Y ) ≤ z ) = 1 − P ( m i n ( X , Y ) > z ) = 1 − P ( X > z , Y > z ) = 1 − P ( X > z ) P ( Y > z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] \begin{aligned} F_{Z}(z)=P(min(X,Y)\leq{z})&=1-P(min(X,Y)>z)\\ &=1-P(X>z,Y>z)\\ &=1-P(X>z)P(Y>z)\\ &=1-[1-F_{X}(z)][1-F_{Y}(z)] \end{aligned} FZ(z)=P(min(X,Y)z)=1P(min(X,Y)>z)=1P(X>z,Y>z)=1P(X>z)P(Y>z)=1[1FX(z)][1FY(z)]
正态分布的可加性:设 X ∼ N ( μ , σ 1 2 ) , X ∼ N ( μ 2 , σ 2 2 ) X\sim{N}(\mu,\sigma_1^2),X\sim{N}(\mu_2,\sigma_2^2) XN(μ,σ12),XN(μ2,σ22),且 X , Y X,Y X,Y相互独立,则 X + Y ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) X+Y\sim{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) X+YN(μ1+μ2,σ12+σ22)

数学期望

离散型随机变量的期望: E ( X ) = ∑ i = 1 ∞ x i p i E(X)=\sum_{i=1}^{\infty}{x_{i}p_{i}} E(X)=i=1xipi

连续型随机变量的期望: E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}{xf(x)dx} E(X)=+xf(x)dx

期望的性质:

  • E ( C ) = C E(C)=C E(C)=C C C C为常数
  • E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X) C C C为常数
  • E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
  • X , Y X,Y X,Y相互独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
image-20230205154209342

方差和标准差

方差: D ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E[X-E(X)]^{2}=E(X^{2})-[E(X)]^{2} D(X)=E[XE(X)]2=E(X2)[E(X)]2

标准差: σ = D ( X ) \sigma=\sqrt{D(X)} σ=D(X)

性质:

  • D ( C ) = 0 D(C)=0 D(C)=0 C C C为常数
  • D ( X + C ) = D ( X ) D(X+C)=D(X) D(X+C)=D(X) C C C为常数
  • D ( C X ) = C 2 E ( X ) D(CX)=C^{2}E(X) D(CX)=C2E(X) C C C为常数
  • D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } D(X\pm{Y})=D(X)+D(Y)\pm{2E\{[X-E(X)][Y-E(Y)]\}} D(X±Y)=D(X)+D(Y)±2E{[XE(X)][YE(Y)]}
  • X , Y X,Y X,Y相互独立,则 D ( X ± Y ) = D ( X ) + D ( Y ) D(X\pm{Y})=D(X)+D(Y) D(X±Y)=D(X)+D(Y)

常用的分布的期望和方差

分布分布律或概率密度数学期望方差
0-1分布 P { x = k } = p k ( 1 − p ) 1 − k , ( k = 0 , 1 ) P\{x=k\}=p^{k}(1-p)^{1-k},(k=0,1) P{x=k}=pk(1p)1k,(k=0,1) p p p p ( 1 − p ) p(1-p) p(1p)
二项分布 B ( n , p ) B(n,p) B(n,p) P { x = k } = C n k p k ( 1 − p ) 1 − k P\{x=k\}=C_{n}^{k}{p^{k}(1-p)^{1-k}} P{x=k}=Cnkpk(1p)1k n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 P ( λ ) P(\lambda) P(λ) P { x = k } = λ k e − λ k ! P\{x=k\}=\frac{\lambda^{k}e^{-\lambda}}{k!} P{x=k}=k!λkeλ λ \lambda λ λ \lambda λ
均匀分布 U ( a , b ) U(a,b) U(a,b) f ( x ) = 1 b − a , ( a < x < b ) f(x)=\frac{1}{b-a},(a<x<b) f(x)=ba1,(a<x<b) a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^{2}}{12} 12(ba)2
正态分布 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2) f ( x ) = 1 2 π σ e ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^{2}}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2 μ \mu μ σ 2 \sigma^{2} σ2
指数分布 E ( θ ) E(\theta) E(θ) f ( x ) = { θ e − θ x , x > 0 0 , 其他 f(x)=\begin{cases}\theta{e^{-\theta{x}}},x>0\\0,其他\end{cases} f(x)={θeθx,x>00,其他 1 θ \frac{1}{\theta} θ1 1 θ 2 \frac{1}{\theta^{2}} θ21

协方差和相关系数

协方差: C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)

协方差的性质:

  • C o v ( X , C ) = 0 Cov(X,C)=0 Cov(X,C)=0 C C C为常数
  • C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y) a , b a,b a,b为常数
  • C o v ( X 1 + X 2 , Y ) = C o v e ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cove(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cove(X1,Y)+Cov(X2,Y)
  • D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) D(X\pm{Y})=D(X)+D(Y)\pm{2Cov(X,Y)} D(X±Y)=D(X)+D(Y)±2Cov(X,Y)
  • X X X Y Y Y相互独立,则 C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0

相关系数: ρ X Y = C o v ( X , Y ) D ( X ) ⋅ D ( Y ) \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\cdot{\sqrt{D(Y)}}} ρXY=D(X) D(Y) Cov(X,Y)

中心极限定理

设随即变量 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2,独立同分布, E ( X k ) = μ E(X_k)=\mu E(Xk)=μ D ( X k ) = σ 2 ≠ 0 , ( k = 1 , 2 , ⋯   ) D(X_k)=\sigma^2\neq0,(k=1,2,\cdots) D(Xk)=σ2=0,(k=1,2,),则当 n n n充分大时,近似有 ∑ k = 1 n X k ∼ N ( n μ , n σ 2 ) \sum_{k=1}^{n}{X_k\sim{N}(n\mu,n\sigma^2)} k=1nXkN(nμ,nσ2),即 ∑ k = 1 n X k − n μ n σ ∼ N ( 0 , 1 ) \frac{\sum_{k=1}^{n}{X_k-n\mu}}{\sqrt{n}\sigma}\sim{N(0,1)} n σk=1nXknμN(0,1)

设随机变量 X ∼ B ( n , p ) X\sim{B(n,p)} XB(n,p),则当 n n n充分大时,近似有 X ∼ N ( n p , n p q ) X\sim{N(np,npq)} XN(npnpq),即 X − n p n p q ∼ N ( 0 , 1 ) \frac{X-np}{\sqrt{npq}}\sim{N(0,1)} npq XnpN(0,1)

image-20230206153804869

三大分布

X 2 ( n ) X^2(n) X2(n)分布:

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立,且 X i ∼ N ( 0 , 1 ) , ( i = 1 , 2 , ⋯   ) X_i\sim{N(0,1),(i=1,2,\cdots)} XiN(0,1),(i=1,2,),则 X 1 2 , X 2 2 , ⋯   , X n 2 ∼ X 2 ( n ) X_1^2,X_2^2,\cdots,X_n^2\sim{X^2(n)} X12,X22,,Xn2X2(n)

t ( n ) t(n) t(n)分布:

X ∼ N ( 0 , 1 ) , Y ∼ X 2 ( n ) X\sim{N(0,1),Y\sim{X^2(n)}} XN(0,1),YX2(n) X , Y X,Y X,Y相互独立,则称 T = X Y / n ∼ t ( n ) T=\frac{X}{\sqrt{Y/n}}\sim{t(n)} T=Y/n Xt(n)

F F F分布:

X ∼ X 1 2 ( n 1 ) , Y ∼ X 2 2 ( n 2 ) X\sim{X_1^2(n_1)},Y\sim{X_2^2(n_2)} XX12(n1),YX22(n2) X , Y X,Y X,Y相互独立,则 F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F=\frac{X/n_1}{Y/n_2}\sim{F(n_1,n_2)} F=Y/n2X/n1F(n1,n2)

矩估计

求解步骤:

  1. 写出总体一阶矩 E ( X ) = g ( θ ) E(X)=g(\theta) E(X)=g(θ),和样本一阶矩 X ‾ = ∑ i = 1 n X i / n \overline{X}=\sum_{i=1}^{n}{X_i/n} X=i=1nXi/n
  2. 令总体矩=样本矩,即 g ( θ ) = X ‾ g(\theta)=\overline{X} g(θ)=X,反解出估计量 θ ^ = h ( X ‾ ) \widehat{\theta}=h(\overline{X}) θ =h(X)
  3. X ‾ \overline{X} X具体值代入 θ ^ = h ( X ‾ ) \widehat{\theta}=h(\overline{X}) θ =h(X),得到估计值

无偏估计:如果 E ( θ ^ ) = θ E(\widehat{\theta})=\theta E(θ )=θ,则称 θ ^ \widehat{\theta} θ θ \theta θ的无偏估计量。

image-20230206161233531 image-20230206161242231

极大似然估计

离散型总体的最大似然估计步骤

  1. 设离散性总体 X X X的分布律为 P { X = x } = p ( X , θ ) P\{X=x\}=p(X,\theta) P{X=x}=p(X,θ),其中 θ \theta θ为未知参数,设 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是一组样本观测值
  2. 计算似然函数 L ( θ ) = ∏ i = 1 n p ( x i , θ ) L(\theta)=\prod_{i=1}^{n}{p(x_i,\theta)} L(θ)=i=1np(xi,θ)
  3. 对似然函数取对数得到 l n L ( θ ) = ∑ i = 1 n l n p ( x i , θ ) lnL(\theta)=\sum_{i=1}^{n}lnp(x_i,\theta) lnL(θ)=i=1nlnp(xi,θ)
  4. d d θ l n L ( θ ) = 0 \frac{d}{d\theta}{lnL(\theta)}=0 dθdlnL(θ)=0,解出最大似然估计 θ ^ \widehat\theta θ

连续型总体的最大似然估计步骤

  1. 设连续性总体 X X X的分布律为 f ( x , θ ) f(x,\theta) f(x,θ),其中 θ \theta θ为未知参数,设 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是一组样本观测值
  2. 计算似然函数 L ( θ ) = ∏ i = 1 n f ( x i , θ ) L(\theta)=\prod_{i=1}^{n}{f(x_i,\theta)} L(θ)=i=1nf(xi,θ)
  3. 对似然函数取对数得到 l n L ( θ ) = ∑ i = 1 n l n f ( x i , θ ) lnL(\theta)=\sum_{i=1}^{n}lnf(x_i,\theta) lnL(θ)=i=1nlnf(xi,θ)
  4. d d θ l n L ( θ ) = 0 \frac{d}{d\theta}{lnL(\theta)}=0 dθdlnL(θ)=0,解出最大似然估计 θ ^ \widehat\theta θ
image-20230207090521085 image-20230207090532787 image-20230207090939861

假设检验

假设检验的步骤

  1. 根据题意构造原假设 H 0 H_0 H0和它的对立假设 H 1 H_1 H1
  2. 按照下表构造检验统计量
  3. 给定显著性水平 α \alpha α,写出拒绝域
  4. 带入样本观察值,算出统计量的具体值
    • 如果该值落入拒绝域,则拒绝原假设
    • 否则接受原假设
检验参数检验参数原假设与备择假设计算统计量的值拒绝域W
均值 μ \mu μ σ 2 \sigma^2 σ2已知 H 0 : μ = μ 0   H 1 : μ ≠ μ 0 H_0:\mu=\mu_0\space{H_1:\mu\neq{\mu_0}} H0:μ=μ0 H1:μ=μ0 z = X ‾ − μ 0 σ / n z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} z=σ/n Xμ0 ∣ z ∣ > u 1 − α 2 \vert{z}\vert>u_{1-\frac{\alpha}{2}} z>u12α
均值 μ \mu μ σ 2 \sigma^2 σ2已知 H 0 : μ = μ 0   H 1 : μ > μ 0 H_0:\mu=\mu_0\space{H_1:\mu>{\mu_0}} H0:μ=μ0 H1:μ>μ0 z = X ‾ − μ 0 σ / n z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} z=σ/n Xμ0 z > u 1 − α z>u_{1-\alpha} z>u1α
均值 μ \mu μ σ 2 \sigma^2 σ2已知 H 0 : μ = μ 0   H 1 : μ < μ 0 H_0:\mu=\mu_0\space{H_1:\mu<{\mu_0}} H0:μ=μ0 H1:μ<μ0 z = X ‾ − μ 0 σ / n z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} z=σ/n Xμ0 z < − u 1 − α z<-u_{1-\alpha} z<u1α
均值 μ \mu μ σ 2 \sigma^2 σ2未知 H 0 : μ = μ 0   H 1 : μ ≠ μ 0 H_0:\mu=\mu_0\space{H_1:\mu\neq{\mu_0}} H0:μ=μ0 H1:μ=μ0 t = X ‾ − μ 0 S / n t=\frac{\overline{X}-\mu_0}{S/\sqrt{n}} t=S/n Xμ0 ∣ t ∣ < t 1 − α 2 ( n − 1 ) \vert{t}\vert<t_{1-\frac{\alpha}{2}}(n-1) t<t12α(n1)
均值 μ \mu μ σ 2 \sigma^2 σ2未知 H 0 : μ = μ 0   H 1 : μ > μ 0 H_0:\mu=\mu_0\space{H_1:\mu>{\mu_0}} H0:μ=μ0 H1:μ>μ0 t = X ‾ − μ 0 S / n t=\frac{\overline{X}-\mu_0}{S/\sqrt{n}} t=S/n Xμ0 t > − t 1 − a ( n − 1 ) t>-t_{1-a}(n-1) t>t1a(n1)
均值 μ \mu μ σ 2 \sigma^2 σ2未知 H 0 : μ = μ 0   H 1 : μ < μ 0 H_0:\mu=\mu_0\space{H_1:\mu<{\mu_0}} H0:μ=μ0 H1:μ<μ0 t = X ‾ − μ 0 S / n t=\frac{\overline{X}-\mu_0}{S/\sqrt{n}} t=S/n Xμ0 t < − t 1 − a ( n − 1 ) t<-t_{1-a}(n-1) t<t1a(n1)

u α u_{\alpha} uα是标准正态分布的 α \alpha α分位数; t α ( n − 1 ) t_{\alpha}(n-1) tα(n1)是自由度为 n − 1 n-1 n1 t t t分布的 α \alpha α分位数

检验参数检验参数原假设与备择假设计算统计量的值拒绝域W
方差 σ 2 \sigma^2 σ2 μ \mu μ已知 H 0 : σ 2 = σ 0 2   H 1 : σ 2 ≠ σ 0 2 H_0:\sigma^2=\sigma_0^2\space{H_1:\sigma^2\neq{\sigma_0^2}} H0:σ2=σ02 H1:σ2=σ02 X 2 = ∑ i = 1 n ( X i − μ ) 2 σ 0 2 X^2=\frac{\sum_{i=1}^{n}{(X_i-\mu)^2}}{\sigma_0^2} X2=σ02i=1n(Xiμ)2 X 2 < X α x 2 ( n ) 或 X 2 > X 1 − α 2 2 ( n ) X^2<X_{\frac{\alpha}{x}}^2(n)或X^2>X_{1-\frac{\alpha}{2}}^2(n) X2<Xxα2(n)X2>X12α2(n)
方差 σ 2 \sigma^2 σ2 μ \mu μ已知 H 0 : σ 2 = σ 0 2   H 1 : σ 2 > σ 0 2 H_0:\sigma^2=\sigma_0^2\space{H_1:\sigma^2>{\sigma_0^2}} H0:σ2=σ02 H1:σ2>σ02 X 2 = ∑ i = 1 n ( X i − μ ) 2 σ 0 2 X^2=\frac{\sum_{i=1}^{n}{(X_i-\mu)^2}}{\sigma_0^2} X2=σ02i=1n(Xiμ)2 X 2 > X 1 − α 2 ( n ) X^2>X_{1-\alpha}^2(n) X2>X1α2(n)
方差 σ 2 \sigma^2 σ2 μ \mu μ已知 H 0 : σ 2 = σ 0 2   H 1 : σ 2 < σ 0 2 H_0:\sigma^2=\sigma_0^2\space{H_1:\sigma^2<{\sigma_0^2}} H0:σ2=σ02 H1:σ2<σ02 X 2 = ∑ i = 1 n ( X i − μ ) 2 σ 0 2 X^2=\frac{\sum_{i=1}^{n}{(X_i-\mu)^2}}{\sigma_0^2} X2=σ02i=1n(Xiμ)2 X 2 < X α 2 ( n ) X^2<X_{\alpha}^2(n) X2<Xα2(n)
方差 σ 2 \sigma^2 σ2 μ \mu μ未知 H 0 : σ 2 = σ 0 2   H 1 : σ 2 ≠ σ 0 2 H_0:\sigma^2=\sigma_0^2\space{H_1:\sigma^2\neq{\sigma_0^2}} H0:σ2=σ02 H1:σ2=σ02 X 2 = ∑ i = 1 n ( X i − X ‾ ) 2 σ 0 2 X^2=\frac{\sum_{i=1}^{n}{(X_i-\overline{X})^2}}{\sigma_0^2} X2=σ02i=1n(XiX)2 X 2 < X α x 2 ( n − 1 ) 或 X 2 > X 1 − α 2 2 ( n − 1 ) X^2<X_{\frac{\alpha}{x}}^2(n-1)或X^2>X_{1-\frac{\alpha}{2}}^2(n-1) X2<Xxα2(n1)X2>X12α2(n1)
方差 σ 2 \sigma^2 σ2 μ \mu μ未知 H 0 : σ 2 = σ 0 2   H 1 : σ 2 > σ 0 2 H_0:\sigma^2=\sigma_0^2\space{H_1:\sigma^2>{\sigma_0^2}} H0:σ2=σ02 H1:σ2>σ02 X 2 = ∑ i = 1 n ( X i − X ‾ ) 2 σ 0 2 X^2=\frac{\sum_{i=1}^{n}{(X_i-\overline{X})^2}}{\sigma_0^2} X2=σ02i=1n(XiX)2 X 2 > X 1 − α 2 ( n − 1 ) X^2>X_{1-\alpha}^2(n-1) X2>X1α2(n1)
方差 σ 2 \sigma^2 σ2 μ \mu μ未知 H 0 : σ 2 = σ 0 2   H 1 : σ 2 < σ 0 2 H_0:\sigma^2=\sigma_0^2\space{H_1:\sigma^2<{\sigma_0^2}} H0:σ2=σ02 H1:σ2<σ02 X 2 = ∑ i = 1 n ( X i − X ‾ ) 2 σ 0 2 X^2=\frac{\sum_{i=1}^{n}{(X_i-\overline{X})^2}}{\sigma_0^2} X2=σ02i=1n(XiX)2 X 2 < X α 2 ( n − 1 ) X^2<X_{\alpha}^2(n-1) X2<Xα2(n1)

X α 2 ( n ) X_{\alpha}^2(n) Xα2(n)是自由度为 n n n X 2 X^2 X2分布的 α \alpha α分位数

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

工资到账啥也会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值