1.并查集原理
1.1针对问题
- FIND:判断两个节点是否在同一集合中
- UNION:归并两个集合
- 并查集可以很容易解决等价类问题,通过FIND可以检查一个等价对的两个元素是否在同一棵树中,如果是,由于它们已经在同一个等价类中,就不需要变动;否则就可以用UNION函数归并两个等价类。
1.2版本
1.2.1最简单版本示例
#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000
int father[MAXN];
//初始化
void init(int n){
for(int i=0;i<n;i++){
father[i]=-1;
}
}
//查询
int FIND(int x){//x:查询位置
if(father[x]==-1)
return x;
else
return find(father[x]);
}
//归并
void UNION(int i,int j){
father[i]=j;
}
1.2.2加权合并规则(按秩合并)
#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000
int father[MAXN];
int Rank[MAXN];
//初始化
void init(int n){
for(int i=0;i<n;i++){
father[i]=-1;
Rank[i]=1;
}
}
//查询
int FIND(int x){//x:查询位置
if(father[x]==-1)
return x;
else
return FIND(father[x]);
}
//归并
void UNION(int i,int j){
if(Rank[i]<=Rank[j])
father[i]=j;
else
father[j]=i;
if(Rank[i]==Rank[j]&&i!=j){
Rank[j]++;
}
}
1.2.3路径压缩
#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000
int father[MAXN];
int Rank[MAXN];
//初始化
void init(int n){
for(int i=0;i<n;i++){
father[i]=-1;
Rank[i]=1;
}
}
//查询
int FIND(int x){//x:查询位置
if(father[x]==-1)
return x;
father[x]=FIND(father[x]);//父节点设为根节点
return father[x];//返回父节点
}
//归并
void UNION(int i,int j){
father[i]=j;
}
2.例题
2.1亲戚问题
题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。
输入格式
第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。
以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Mi和Mj具有亲戚关系。
接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。
输出格式
P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。
AC代码:
#include<iostream>
using namespace std;
#define MAXN 5000
int Father[MAXN];
int Rank[MAXN];
void init(int n){
for(int i=0;i<n;i++)
{
Father[i]=-1;
Rank[i]=1;
}
}
int find(int c){
if(Father[c]==-1)
return c;
else{
return find(Father[c]);
}
}
void Union(int x,int y){
int m=Rank[x];
int n=Rank[y];
if(m<=n){
Father[x]=y;
}
else
Father[y]=x;
if(m==n&&x!=y){
Rank[y]++;
}
}
int main(){
int n,m,p;
init(n);
cin>>n>>m>>p;
for(int i=0;i<m;i++){
int mi,mj;
cin>>mi>>mj;
Union(mi,mj);
}
for(int i=0;i<p;i++){
int pi,pj;
cin>>pi>>pj;
if(find(pi)==find(pj))
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
}