你可以不信我,但是最好相信人工智能(AI)大模型的分析。
人工智能(AI)正在逐步渗透各行各业,尤其是一些重复性高、可预测的工作。未来,一些职业可能会受到影响或完全被AI取代,而另一些则会因为AI技术的协助而发生转型。
以下是一些可能受到AI取代或显著改变的职业。
1. 制造业和生产线工作
-
重复性劳动:包括装配工人、操作员等职位,AI和机器人可以替代人工执行高度重复和机械化的任务。现代工业生产中,许多任务已经由机器人来完成,减少了对人工的需求。
-
仓储管理:AI可以通过自动化系统进行库存管理、货物搬运和分类,像亚马逊的机器人就已经在仓库中广泛应用。
2. 客户服务和支持
-
客服代表:AI驱动的聊天机器人和语音助手(如Siri、Alexa、Google Assistant)正在逐步取代人工客服,处理简单的客户咨询、问题解答和投诉处理。
-
电话销售:基于AI的自动化拨打系统和客户关系管理系统(CRM)可以识别潜在客户并执行销售跟进,减少人工销售人员的需求。
3. 运输和物流
-
货车司机、出租车司机:随着自动驾驶技术的发展,未来无人驾驶汽车、卡车、配送机器人等有可能取代传统的司机岗位。自动驾驶技术正在不断进步,特斯拉、Waymo等公司已经在试点自动驾驶汽车。
-
无人机配送:未来,无人机和自动化配送系统可能会取代传统的快递员工作,尤其在城市中,AI能够更加高效地进行路线规划和配送。
4. 会计和财务
-
基础会计和审计:AI可以通过大数据分析和自动化算法处理大量的财务数据,进行税务计算、账目审核、预算管理等工作。机器学习和自然语言处理技术已经可以自动化财务报表生成、财务分析等。
-
财务分析师:部分基础的财务分析和投资决策也可能被AI取代,尤其是在处理大数据和实时分析的领域。
5. 数据输入和文员工作
-
文员和数据录入员:许多办公室职能,如数据录入、文档处理、文字编辑等,已经被AI系统取代。AI可以通过自然语言处理技术、高效的扫描和识别系统实现文档内容的数字化,并且自动完成相关操作。
-
文件管理:自动化的文件管理系统可以处理大量的档案分类、归档和检索工作,减少对人工的依赖。
6. 医疗诊断和影像分析
-
医学影像分析:AI在医学影像领域的应用日益成熟,如放射科医生通过AI算法来分析X光、CT扫描和MRI图像。AI可以准确地发现疾病和异常,且速度更快、成本更低。
-
辅助诊断:AI可以结合病人的历史数据、症状和体征,辅助医生进行初步诊断。在某些情况下,AI甚至能够单独做出诊断决策。
7. 写作和新闻报道
-
新闻写作:AI已经能够生成新闻文章、财报摘要、体育赛事报道等。像美联社和华尔街日报等新闻机构就已经使用AI自动生成财经报道和体育新闻。
-
内容创作:虽然创意性的写作仍然需要人类的参与,但一些标准化的内容创作(例如报告、产品描述、广告文案等)可能会被AI替代。
8. 法律行业
-
合同审查与法律研究:AI可以通过分析大量法律文件和案例,帮助律师进行合同审查、判例搜索和法律研究。这些过程中的很多重复性工作都可以通过AI自动完成。
-
合规检查:AI能够处理繁琐的合规检查工作,自动化地跟踪法规变化和政策要求。
9. 零售和快餐行业
-
收银员和餐厅服务员:自动化收银机和自助点餐系统正在逐步取代传统的人工服务。在快餐行业,自动化厨房设备和机器人服务员也在一些地方开始使用。
-
库存管理:AI可以通过传感器和数据分析技术优化库存管理,自动补货和库存预测,从而减少对人工管理的需求。
10. 翻译和语言处理
-
基础翻译工作:随着AI在自然语言处理方面的进步,机器翻译(如Google Translate)已经能够处理基础的语言翻译,尤其是对于常见语言对的翻译,AI的效率和准确性已经接近专业翻译水平。
-
语音识别和转录:语音转文字的技术已经非常成熟,AI能够高效地进行实时语音转录、会议记录等工作,取代了传统的速记员。
哪些职业可能不易被AI取代?
尽管AI将取代许多职位,但也有一些职业由于其创造性、情感劳动或复杂的人际互动,不容易被AI完全取代:
-
艺术创作:如画家、音乐家、作家等,虽然AI能生成某些形式的艺术作品,但情感的表达和独特的创造性仍然是人类的优势。
-
心理咨询和治疗:涉及情感共鸣和人际理解的工作,AI无法完全替代人类的感情交流。
-
领导力和战略决策:高级管理职位和战略决策仍然需要人类的判断力和对复杂情境的理解。
总的来说,AI将影响各种职业,尤其是那些重复性、标准化的任务。
然而,对于高度创造性、复杂的社交和情感劳动以及需要战略思维的职业,AI的影响可能相对较小。
AI大模型经过庞大的知识库、经验库的训练,是一个非常优秀的高级助手,人人都可以配备一个。学会使用它,可以让你如虎添翼,工作、生活更加得心应手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。