国内AI大模型前十排行榜,最后一个你可能没听过

根据2024年的最新数据和搜索结果,国内AI大模型的前十排行榜

  1. Deepseek

    :最近爆火,一度成为对标甚至超越ChatGPT的存在。

  2. 阿里云通义千问(Qwen2-72B)

    :在SuperCLUE基准测试中得分最高,超过众多国内外闭源模型,引领全球的开源生态。

  3. 华为盘古大模型

    :凭借其强大的技术能力和行业应用得到广泛认可。

  4. 百度文心一言(ERNIEBot)

    :专注于自然语言理解与生成,适用于文本创作、智能问答等场景。

  5. 科大讯飞星火大模型

    :支持对话、写作、编程等功能,还能提供语音交互方式。

  6. 字节跳动豆包(Doubao-Pro)

    :在客观评测中以75.96分排名第二,得分最高的国产大模型。

  7. 智谱清言(GLM-4)

    :在数据和算法方面有一定优势,其模型能够较好地处理各种复杂的语言任务。

  8. 百川智能Baichuan4

    :在国内大模型中排名第一,其文科、理科能力较为均衡。

  9. MiniMax abab6.5

    :大模型创业公司的代表,超过70分的表现,位列国内大模型第一梯队。

  10. 零一万物Yi系列

:模型在多项评测中表现出色,位于行业前列。
  1. 月之暗面Kimi(Moonshot-v1)
:在处理长文本内容方面具有一定优势,能很好地理解和处理长篇文档、会议纪要等。

以上排名综合了多个来源的数据和评测结果,反映了国内AI大模型在不同领域和应用场景中的竞争力和影响力

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### 大型语言模型发展趋势预测 随着技术的进步,预计到2025年,大型语言模型将继续保持快速发展趋势。根据当的发展轨迹和技术突破方向,可以预见未来几年内几个重要的变化和发展: #### 参数规模不再是唯一衡量标准 使语言模型变得更大并不会本质上使其更擅长理解用户的意图[^2]。因此,在未来的排名中,除了考虑参数量外,更多关注点将放在模型的实际应用效果、安全性以及与用户需求的一致性等方面。 #### 行业专用模型崛起 不同于通用的大规模预训练模型,针对特定领域优化过的垂直行业模型将会获得更多重视。特别是在金融、法律等领域,由于其特殊性和高门槛特性,这类定制化的解决方案能够更好地满足专业场景下的复杂要求[^1]。 #### 对齐人类价值观的重要性增加 为了减少潜在风险并提高实用性,研究人员正积极探索如何让AI系统更加贴近人类的价值观和社会伦理准则。通过引入高质量的人类反馈机制来指导模型调整成为一种有效手段,这有助于提升模型的安全性和可靠性。 然而需要注意的是,目尚无法提供具体的2025年大模型排行榜单详情,因为这一榜单取决于众多因素的变化与发展速度,包括但不限于技术创新的速度、市场需求导向等不可控变量的影响。 ```python # Python代码示例用于模拟构建一个简单的时间序列预测函数 import numpy as np from sklearn.linear_model import LinearRegression def predict_ranking(years, rankings): """ 使用线性回归方法对未来某一年份的排名情况进行粗略估计 :param years: 已知历史年度列表 :type years: list[int] :param rankings: 各个对应年的排名位置 :type rankings: list[float] :return: 预测得到的目标年份排名值 :rtype: float """ X = np.array(years).reshape((-1, 1)) y = np.array(rankings) model = LinearRegression() model.fit(X, y) target_year = [[2025]] predicted_ranking = model.predict(target_year)[0] return round(predicted_ranking, 2) years_data = [2020, 2021, 2022, 2023] rankings_data = [5, 4, 3, 2] # 假设这是过去四年某个模型的排名情况 print(f"Predicted Ranking for 2025: {predict_ranking(years_data, rankings_data)}") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值