1、ChatGPT
推荐原因:强大的自然语言处理能力,协助产品经理进行头脑风暴、文案撰写、用户调研等工作,相当于一个“私人助理”。
事实上,ChatGPT算是广泛意义上AI的起点,大家还是要清楚的,尤其是ChatGPT是OpenAI在2022年11月发布的,在面试时可以灵活表达。
产品简介:基于GPT模型的对话AI,支持自然语言生成、联网搜索、持续学习等功能。
使用场景:文案撰写、用户调研、需求分析、产品问题辅助解答。
核心价值:快速获取信息,提升内容创作效率。
优点缺点:优点是功能全面,支持多种任务;缺点是需要付费订阅高级功能。
竞争对手:DeepSeek、Kimi、文心一言。
体验网址:https://chatgpt.com/
2、DeepSeek、文心一言、Kimi、豆包、元宝
这几款国产工具和ChatGPT类似,相信大家早就有过体验。
这里的重点是,大家要提前有所准备,尤其是对于移动端APP的设计,比如,从微信生态角度、产品推广角度来讲下元宝APP的启发,这对于面试交流很重要。
当然,这些工具也挺实用。
尤其是在不同场景下都能为产品经理提供强大的支持,无论是专业领域的深度分析、中文场景下的文案创作,还是日常的简单任务处理,都能显著提升工作效率,帮助产品经理快速完成多种任务。
在这里就不单独列出体验网址了,希望大家多多使用。
3、Monica
推荐原因:一站式满足多种AI需求,助力产品经理高效完成市场调研、用户调研、文案撰写等工作,提升工作效率和创造力。另外,Monica的记忆模式还是非常实用的。
产品简介:Monica是一款整合了多种先进AI模型的全能AI生产力助手,提供AI聊天、AI制图、AI写作、网页/PDF/视频阅读分析等功能。
使用场景:市场调研、用户调研、文案撰写、竞品分析、创意发散。
核心价值:快速获取信息,提升内容创作效率,激发创意灵感。
优点缺点:优点是功能多样,支持多种AI模型,免费版功能丰富;缺点是部分功能需付费,如GPT-4等高级功能。
竞争对手:Poe、Sider、perplexity。
体验网址:https://monica.im/home
4、Poe
推荐原因:Poe是一个强大的AI平台,整合了多种主流AI模型,为用户提供更多样化的选择。它支持多轮对话、个性化定制,并且具有友好的交互体验,帮助产品经理在内容创作、问答和交互任务中提升效率。
产品简介:Poe是由Quora开发的AI平台,聚合了多种AI模型,如ChatGPT、Claude、Sage等,支持即时问答和互动对话。
使用场景:
-
内容创作:撰写文案、生成创意、优化文档。
-
问答:快速获取信息,解决专业问题。
-
日常助手:规划旅行、提醒重要事项、提供生活建议。
-
娱乐陪伴:趣味闲聊、分享笑话、讨论影视音乐。
-
客户服务支持:7*24 在线解答客户问题,提高客户满意度。
核心价值:多模型集成、多轮对话能力、个性化定制、友好的交互体验。
优点缺点:优点是响应速度快,支持多设备,隐私保护较好,社区生态活跃;缺点是部分功能需付费,隐私保护和社区互动方面有待提升。
竞争对手:Monica、Sider、perplexity。(Poe和Monica都很好用,相对来说,前者更像大酒店,而后者更像是小吃一条街,价格也更实在)
体验网址:https://poe.com/
5、Trae
推荐原因:AI原生IDE,字节体系下的新一代AI编程工具,可帮助产品经理快速编写、优化代码,提升开发效率,加速产品迭代;也可以生成原型页面,辅助原型设计等。
产品简介:Trae是字节跳动推出的免费AI编程工具,支持原生中文,集成了Claude 3.7和GPT-4o等主流AI模型,提供Builder模式和Chat模式。
使用场景:AI编程、代码编写、原型设计、MVP验证。
核心价值:快速构建项目,编写优化代码,提升开发效率,降低开发门槛。
优点缺点:优点是集成模型较多,也有DeepSeek模型,而且免费使用,功能全面;缺点是排队较长,部分功能需进一步完善。
竞争对手:Cursor、Windsurf。
体验网址:https://www.trae.com.cn/(国内版);https://traeide.com/(国外版)
6、Cursor
推荐原因:强大的代码生成能力,与Claude集成体验极佳,可帮助产品经理快速完成代码编写,提升开发效率,节省时间。
产品简介:Cursor是一款AI编程工具,集成Coding、Debug、LLM和AI Agent等功能,支持多种编程语言的AI驱动代码补全。
使用场景:代码生成、代码优化、项目管理、团队协作。
核心价值:快速生成代码,提升开发效率,优化代码质量。
优点缺点:优点是代码生成能力强,用户体验好;缺点是免费版功能有限,需付费订阅高级功能,但还是推荐有条件同学订阅,能节省不少时间,每个月20刀。
竞争对手:Trae、Windsurf。
体验网址:https://www.cursor.com/
7、Figma + Cursor
推荐原因:Figma是产品经理和设计师常用的UI/UX设计工具,而Cursor是一款强大的AI编程工具。两者的结合可以帮助产品经理快速将设计转化为代码,提升开发效率,节省时间,确保设计与实现的一致性。
产品简介:
Figma:基于云端的UI/UX设计工具,产品同学也可以以此来进行原型设计,支持实时协作、版本控制和设计系统管理。
Cursor:AI驱动的代码编辑器,支持多种编程语言的AI驱动代码补全,能够读取Figma设计文件并生成代码。
使用场景:
设计到代码的快速转换:产品经理可以利用Figma完成UI设计,然后通过Cursor快速生成对应的代码,减少手动编写代码的时间。
团队协作:设计师和开发者可以无缝协作,设计师在Figma中完成设计,开发者通过Cursor直接获取设计数据进行开发。
项目迭代:在产品迭代过程中,快速调整设计并更新代码,确保设计与实现的一致性。
**优点缺点:**优点是高效转换设计到代码,支持多种编程语言,实时协作,免费版功能丰富;缺点是部分功能需付费,复杂设计的代码生成可能需要手动调整,学习曲线较陡。
竞争对手:Sketch + AI编程工具、Adobe XD + AI编程工具。
Figma体验网址:https://www.figma.com/
8、Mapify
推荐原因:可以快速将复杂信息转化为结构化的思维导图,帮助产品经理高效整理产品需求和市场调研数据。
产品简介:AI驱动的思维导图工具,支持从PDF、Word、视频等多种格式内容中提取关键信息。
使用场景:需求整理、市场调研、头脑风暴、团队协作等,适合快速输出或梳理的场景。
核心价值:提升信息梳理效率,促进快速产出、团队沟通。
优点缺点:优点是支持多种格式解析;缺点是免费版功能有限。
竞争对手:Whimsical、XMind。
体验网址:https://mapify.so/cn
9、Zeda.io
推荐原因:智能管理用户反馈,帮助产品经理将客户需求与业务目标结合,优化产品决策,尤其把VoC(客户之声)应用在产品洞察上。(其官网首页banner就直呼产品定位:planning tool)
产品简介:产品管理平台,支持反馈分类、战略规划、收益导向的产品路线图生成。
使用场景:用户反馈管理、需求优先级排序、产品路线图规划。
核心价值:数据驱动决策,确保产品方向与用户需求一致。
优点缺点:优点是功能全面,支持多工具集成;缺点是学习曲线较陡。
竞争对手:Productboard。
体验网址:https://zeda.io/
10、Algforce AI
推荐原因:强大的数据分析能力,帮助产品经理快速从数据中获取洞察,尤其是把Excel表格转化为可视化展示,辅助产品决策和业务优化。
产品简介:Algforce.ai是AI数据分析服务平台,通过自然语言处理技术,让用户无需编程技能即可进行数据库查询和数据分析。
使用场景:数据分析、数据报告生成、竞品分析、用户行为分析。
核心价值:快速生成数据洞察,辅助业务决策,提升数据利用效率。
优点缺点:优点是操作简单,无需编程技能;缺点是功能相对基础,复杂分析需手动调整。
竞争对手:Tableau、Power BI。
体验网址:https://www.algforce.com/
希望这篇工具盘点能为你提供启发,找到属于自己的“产品效率神器”!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。