正文介绍
(文末有免费下载方式)
复旦大学这两本大模型“红宝书”的迭代史,堪称一部中国AI学术圈应对技术革命的“进化论”样本。从第一版到第二版的蜕变,不仅折射出大模型技术的狂飙突进,更暗藏着一线研究者对行业生态的深刻洞察。
第一版:大模型时代的“开荒指南”
2023年9月面世的首版,像极了一场及时雨。当全球开发者还在ChatGPT的震撼中晕头转向时,张奇团队用297页构建起完整的技术图谱。书中“预训练-微调-强化学习”的三段式框架,恰如庖丁解牛般拆解了神秘的黑箱模型。特别是在DeepSpeed分布式训练案例中,作者们甚至贴心标注了CUDA内核优化的调参技巧,这种手把手教学的姿态,像极了实验室里熬夜带师弟的博士生学长。而将LoRA微调与强化学习串联的技术链条,更是精准击中了当时行业“微调即失效”的痛点。
第二版:站在巨人肩膀上的眺望
时隔18个月推出的第二版,新增的多模态与智能体章节,堪称对行业风向的精准预判。当多数人还在争论“文本模型能否理解图像”时,书中已系统性拆解了视觉-语言联合建模的七种融合范式,其中对谷歌PaLI-X模型架构的逆向工程分析,暴露出国产大模型在多模态对齐上的技术代差。更惊艳的是智能体章节,作者团队竟把Coze平台开发案例做成了“乐高积木式”教学——从记忆模块的向量数据库选型,到工具调用时的权限沙盒设计,处处透着工业级落地的实战智慧。
藏在修订细节里的行业密码
两版间看似细微的术语变迁,暗藏着技术演进的草蛇灰线。当“专业数据”悄然变为“领域数据”,实则是学界对医疗、法律等垂直场景的进攻号角;而新增的混合专家模型章节,更是提前为万亿参数时代的算力困局埋下伏笔。最让我拍案的是检索增强生成(RAG)部分,作者用“知识保鲜”的生动比喻,点破了当前大模型幻觉难题的破局之道——这哪里是教科书,分明是给AI产品经理的生存手册。
开发者眼中的“清明上河图”
通读两版的最大感受,是技术情怀与实用主义的精妙平衡。当第二版用整章剖析vLLM推理框架时,那些关于KV缓存压缩率的对比表格,分明是给中小企业的“降本指南”。而新增的FP8低精度训练案例,则暴露出国产算力卡脖子背景下的生存智慧。这种既仰望星空又脚踏实地的叙事,恰似给狂奔的大模型行业系上了安全带。
如今再翻看第一版前言里“八年磨一剑”的创作故事,对比第二版中Sora视频模型的拆解,恍然惊觉:这哪里是两本书的迭代,分明是一部中国AI人追赶技术奇点的实时纪录片。当我们在GitHub上clone最新模型时,或许该庆幸有这样一群引路人,将晦涩的数学公式熬成了技术民主化的浓汤。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。