在人工智能飞速发展的当下,大语言模型成为行业焦点。它凭借强大能力革新着诸多领域,而小模型也在特定场景发挥作用。二者有何特性?又存在哪些差异?让我们一同深入探究。
大语言模型是基于深度学习的人工智能技术,是拥有大规模参数的语言处理模型,通常以Transformer架构为基础,能够处理和生成自然语言文本📚。
1、大语言模型:人工智能领域的“超级大脑”💡
显著特点
- 庞大的参数规模:拥有数十亿甚至数万亿级别的参数!这些参数通过在海量语料库上进行无监督或有监督训练学习而来,能捕捉丰富的语言知识和语义信息🗂️。例如,GPT-3拥有1750亿个参数,它就像一个知识渊博的“百科全书”,能从海量文本中学习到复杂的语言模式。
- 超强的语言处理能力:无论是文本生成、问答、翻译还是摘要,大语言模型都能轻松应对✅。比如,当你让它创作一篇科幻小说,它能快速构思出跌宕起伏的情节、充满想象力的场景;当你向它提问某个复杂的科学问题,它也能条理清晰地给出答案。生成的文本语法正确、语义连贯,读起来和人类创作的几乎没有差别。
- 出色的泛化能力:面对从未见过的文本数据和任务,大语言模型凭借学习到的通用语言模式和语义理解能力,也能展现出良好的适应性🧠。即使是全新领域的问题,它也能尝试给出合理的解答。
广泛应用场景
- 自然语言处理任务:在机器翻译、智能客服、文本摘要、知识问答系统等任务中,大语言模型发挥着关键作用。例如,在智能客服场景中,它可以快速理解用户的问题,并给出准确的解决方案,大幅提高客服效率💬。
- 内容创作助手:助力创作新闻报道、故事、诗歌、代码等各种类型的文本内容。许多作家、编剧会用大语言模型激发灵感,辅助创作📝。
- 智能对话伙伴:作为对话系统的核心,大语言模型能与用户自然流畅地对话,提供信息查询、建议和解决方案,就像身边的智能小助手🤖。
2、大模型和小模型的区别:从多个维度对比🆚
- 参数规模差异大模型的参数数量极为庞大,这使得它们能够学习更复杂的语言模式和语义关系。而小模型的参数数量通常在几百万到几千万之间,这限制了其对语言知识的表示和学习能力📊。比如,一个简单的小模型可能只有几百万参数,在学习语言知识时就像“小书架”,能容纳的知识有限;而大模型则像“大型图书馆”,储存的知识量远超小模型。
性能表现差距
- 语言理解能力:大模型在理解复杂语义、上下文信息和多语言任务方面表现出色,能准确把握各种自然语言表达的意图🤔。比如在分析一篇隐晦的文学作品时,大模型可以结合背景知识和上下文,深入解读其中的含义。小模型由于参数有限,在处理复杂语言结构和语义时容易“卡壳”,理解能力较弱。
- 语言生成质量:大模型生成的文本自然、流畅,符合人类语言习惯,内容丰富多样🎉。例如,用大模型生成旅游攻略,它会详细介绍景点特色、美食推荐、住宿建议等。小模型生成的文本可能存在语法错误、语义不连贯或内容单调的问题,比如生成的攻略可能只是简单罗列几个景点名称。
- 泛化能力:大模型面对新任务和数据时,能更好地适应和泛化,表现稳定可靠。小模型则更容易受数据分布变化影响,在新场景下性能下降明显📉。
训练数据要求不同
- 数据规模差异:大模型训练需要海量文本数据,涵盖各个领域和主题,以此学习丰富的语言知识和语义信息📚。小模型在相对较小规模数据上即可训练,但可能因数据不足限制性能提升。例如,训练一个大的翻译模型,需要收集不同语言、不同领域的大量文本;而小翻译模型可能只需某个特定领域的少量语料。
- 数据多样性区别:大模型能从多样化数据中学习不同语言表达方式和语义理解,对各种领域和风格文本都能较好处理🌈。小模型可能因数据多样性不足,在特定领域表现尚可,但在其他领域存在局限。比如专注于医学领域的小模型,处理医学文本得心应手,但面对金融文本时就难以胜任。
计算资源与成本对比
- 硬件需求不同:训练和部署大模型需要高性能的GPU或TPU集群,以及大量内存和存储设备,对硬件要求极高💻。小模型对硬件要求较低,普通计算机设备或小型服务器就能满足需求。
- 训练时间差异:大模型训练过程漫长,可能需要数周甚至数月⏳。小模型训练时间短,能快速完成训练并投入使用。
- 成本差距显著:大模型研发和部署成本高昂,涉及硬件采购维护、数据收集整理、算法研发和能源消耗等多方面💰。小模型成本相对较低,更适合资源有限的场景和应用。
3、总结
大语言模型是基于深度学习、拥有大规模参数的语言处理模型,以Transformer架构为基础,具备庞大的参数规模、超强的语言处理能力和出色的泛化能力,广泛应用于自然语言处理、内容创作、智能对话等领域。与小模型相比,大模型在参数规模、性能表现、训练数据要求、计算资源与成本等方面均存在显著差异,参数更多、性能更强、对数据和硬件要求更高、成本也更为高昂;而小模型则更轻巧灵活,适用于特定场景和资源受限的情况。
4、表格对比💡
对比维度 | 大模型 | 小模型 |
---|---|---|
参数规模 | 拥有数十亿甚至数万亿级别的参数,能学习复杂的语言模式和语义关系 | 参数数量通常在几百万到几千万之间,对语言知识的表示和学习能力受限 |
语言理解能力 | 在理解复杂语义、上下文信息和多语言任务方面表现出色,能准确把握各种自然语言表达的意图 | 由于参数有限,在处理复杂语言结构和语义时容易遇到困难,理解能力较弱 |
语言生成质量 | 生成的文本自然、流畅,符合人类语言习惯,内容丰富多样 | 生成的文本可能存在语法错误、语义不连贯或内容单调的问题 |
泛化能力 | 面对新任务和数据时,能更好地适应和泛化,表现稳定可靠 | 更容易受数据分布变化影响,在新场景下性能下降明显 |
训练数据规模 | 需要海量文本数据,涵盖各个领域和主题,以此学习丰富的语言知识和语义信息 | 在相对较小规模数据上即可训练,但可能因数据不足限制性能提升 |
训练数据多样性 | 能从多样化数据中学习不同语言表达方式和语义理解,对各种领域和风格文本都能较好处理 | 可能因数据多样性不足,在特定领域表现尚可,但在其他领域存在局限 |
硬件需求 | 训练和部署需要高性能的GPU或TPU集群,以及大量内存和存储设备,对硬件要求极高 | 对硬件要求较低,普通计算机设备或小型服务器就能满足需求 |
训练时间 | 训练过程漫长,可能需要数周甚至数月 | 训练时间短,能快速完成训练并投入使用 |
研发部署成本 | 涉及硬件采购维护、数据收集整理、算法研发和能源消耗等多方面,研发和部署成本高昂 | 成本相对较低,更适合资源有限的场景和应用 |
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。