字节开源深度研究框架DeerFlow:让AI成为你的全能研究助手!

嘿,各位程序员朋友们!今天要给大家介绍一款超厉害的开源项目——Deer - Flow,由字节跳动倾力打造。它就像是一个智能助手,能帮我们轻松搭建和管理自动化工作流,让繁琐的任务流程变得井井有条。想知道它到底有多神奇?咱们一起往下看。

一、Deer - Flow 是什么

Deer - Flow 是字节跳动开源的一款自动化工作流框架,旨在为开发者提供一个灵活、高效且易于扩展的工具,用于构建各种复杂的自动化任务。无论是数据处理、系统运维,还是业务流程自动化,Deer - Flow 都能大显身手。

请添加图片描述

从官方网站(https://github.com/bytedance/deer-flow/blob/main/README_zh.md)上,我们可以了解到它基于有向无环图(DAG)的设计理念。简单来说,DAG 就像是一张任务关系地图,每个任务是地图上的一个节点,任务之间的依赖关系就是连接这些节点的线,这样就确保了任务按照我们设定的顺序依次执行,不会出现循环依赖的问题,让整个工作流的逻辑一目了然。请添加图片描述

二、Deer - Flow 的核心特性

  1. 强大的可视化编辑:Deer - Flow 提供了直观的可视化界面,通过简单的拖拽操作,就能轻松定义工作流。哪怕你是个新手,也能快速上手,无需复杂的代码编写,就能构建出复杂的任务流程。就像搭积木一样,把不同功能的“积木块”组合起来,一个完整的工作流就诞生啦。
  2. 高度灵活的任务编排:它支持多种类型的任务节点,包括脚本执行、HTTP 请求、数据库操作等等。你可以根据实际需求,自由组合这些节点,实现多样化的业务逻辑。比如,在一个数据处理工作流中,先从数据库读取数据,然后通过脚本进行数据清洗,最后将处理好的数据发送到指定的 API 接口,整个过程一气呵成。
  3. 可靠的执行与监控:Deer - Flow 具备可靠的任务执行引擎,能够保证任务的稳定运行。同时,它还提供了全面的监控功能,让你实时了解工作流的执行状态、进度以及每个任务节点的详细信息。一旦出现问题,能迅速定位并解决,大大提高了工作流的可靠性和可维护性。

三、Deer - Flow 的应用场景

  1. 数据处理与分析:在大数据时代,数据处理是个大工程。Deer - Flow 可以帮助我们自动化完成数据采集、清洗、转换和分析等一系列任务。例如,定期从多个数据源获取数据,进行格式统一和异常值处理后,再进行数据分析并生成报表,整个流程实现自动化,节省大量人力和时间。
  2. 持续集成与部署(CI/CD):对于软件开发团队来说,CI/CD 流程至关重要。Deer - Flow 能够很好地融入这个流程,实现代码编译、测试、打包以及部署的自动化。每次代码更新时,自动触发相应的任务,确保软件的快速迭代和稳定发布。
  3. 系统运维自动化:服务器管理、日志收集与分析、故障预警等运维任务往往繁琐且重复。借助 Deer - Flow,我们可以将这些任务自动化,设置定时任务或者根据特定事件触发,提高运维效率,降低人为错误的风险。

四、如何上手 Deer - Flow

如果你已经迫不及待想要尝试一下 Deer - Flow,官方 GitHub 仓库(https://github.com/bytedance/deer-flow/blob/main/README_zh.md)为我们提供了详细的文档和教程。从环境搭建到示例演示,一步步引导你快速入门。你可以根据自己的需求,参考官方示例进行修改和扩展,逐步打造出适合自己业务场景的自动化工作流。

# 克隆仓库
git clone https://github.com/bytedance/deer-flow.git
cd deer-flow

# 安装依赖,uv将负责Python解释器和虚拟环境的创建,并安装所需的包
uv sync

# 使用您的API密钥配置.env
# Tavily: https://app.tavily.com/home
# Brave_SEARCH: https://brave.com/search/api/
# 火山引擎TTS: 如果您有TTS凭证,请添加
cp .env.example .env

# 查看下方的"支持的搜索引擎"和"文本转语音集成"部分了解所有可用选项

# 为您的LLM模型和API密钥配置conf.yaml
# 请参阅'docs/configuration_guide.md'获取更多详情
cp conf.yaml.example conf.yaml

# 安装marp用于PPT生成
# https://github.com/marp-team/marp-cli?tab=readme-ov-file#use-package-manager
brew install marp-cli
# 可选,通过pnpm安装Web UI依赖:
cd deer-flow/web
pnpm install

Deer - Flow 就像一把神奇的钥匙,为我们打开了自动化工作流的大门。它不仅提高了工作效率,还让复杂的任务变得更加简单可控。无论是个人开发者,还是大型团队,都值得一试。赶紧去探索这个强大的开源项目吧!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值