传统产品经理 VS AI 产品经理:超详细收藏我这一篇就够了

在当今数字化浪潮中,AI 技术的迅猛发展正重塑着各个行业,产品管理领域也不例外。AI 领域权威吴恩达指出,AI 促使软件开发效率大幅提升且成本降低,这一变革催生了对能精准决策 “建造什么” 的产品经理的强劲需求,尤其是深谙 AI 的产品经理,其前景一片光明。与此同时,传统软件产品管理与 AI 产品管理间的差异也愈发显著。接下来,就让我们深入探究二者之间的不同之处。
请添加图片描述

一、需求洞察方式

(一)传统产品经理

传统产品经理洞察用户需求,主要依靠市场调研、用户反馈、竞品分析等手段。通过问卷调查、用户访谈、焦点小组等形式收集大量数据,挖掘用户痛点、需求与期望。这种方式聚焦用户显性需求,从用户行为和言论分析中确定产品功能特性。

以微信为例,早期通过大量用户调研,了解到人们对于即时通讯的需求,不断优化文字、语音聊天功能,以及朋友圈展示、点赞评论等社交功能,满足了用户日常沟通与社交分享的需求。传统的调研方式虽然能够较为直观地获取用户的想法,但也存在一定局限性,比如样本数量可能有限,用户表达可能存在偏差,难以挖掘到一些潜在的、用户自身都未察觉的需求。

(二)AI 产品经理

吴恩达强调,AI 产品的独特之处在于挖掘用户潜在需求。AI 产品经理借助大数据分析、机器学习算法,深度挖掘海量用户数据。例如抖音,通过分析用户在平台上的观看历史、点赞、评论、停留时长等多维度数据,精准捕捉用户兴趣偏好,推荐出用户可能感兴趣却未曾察觉的视频内容,极大提升用户体验。

对比维度传统产品经理AI产品经理
需求洞察方式通过市场调研、用户访谈等获取显性需求,样本和用户表达存在局限性利用大数据分析、机器学习挖掘潜在需求,数据处理能力强但面临数据质量等挑战
产品设计理念以功能为导向,优化产品逻辑架构和界面交互,灵活性不足以智能为导向,强调产品自主学习和个性化服务,对技术要求高
核心任务侧重主要解决连接问题,打破信息壁垒,连接人、信息和资源聚焦提升效率,运用AI技术解决复杂问题,需平衡技术与业务关系
目标用户群体主要面向消费者,满足个人用户需求,拓展企业级市场受限主要面向企业服务,在企业级市场潜力大,面临复杂业务场景等挑战
技术要求部分从业者不懂技术,依赖需求文档和口头交流,易出现沟通问题需具备机器学习、深度学习等技术知识,技术能力是核心竞争力
业务理解与数据运用业务理解深度和广度相对较浅,确定方案后直接画原型图深入理解业务流程,确定方案后先明确数据和模型,对业务与技术结合要求高

二、产品设计理念

(一)传统产品设计

传统产品设计以功能为导向。产品经理依据市场调研得出的用户需求,规划产品功能,并着重优化功能,使其易用高效。在设计时,关注产品逻辑架构、界面交互等,满足用户完成特定任务的需求。

像传统办公软件 WPS,在功能设计上,围绕文档编辑、表格制作、演示文稿展示等核心功能不断优化,如增加丰富的字体、格式选项,便捷的图表制作工具等,以提升用户办公效率。传统功能导向的设计能够满足用户对产品基本功能的使用需求,但在面对用户日益多样化、个性化的需求时,可能显得灵活性不足。

(二)AI 时代的产品设计

在 AI 时代,产品设计理念转向以智能为导向,这是 AI 产品经理的核心思路。吴恩达认为,AI 产品不仅要实现功能,更要能自主学习、持续进化,为用户提供个性化、智能化服务。

例如智能客服领域,京东的智能客服 JIMI,运用自然语言处理技术和机器学习算法,不仅能快速回答常见问题,还能在与用户对话过程中学习用户语言习惯、问题类型,不断优化回答策略。随着使用时间增长,能更精准理解用户意图,提供更优质服务。与之竞争的阿里小蜜,同样具备强大的智能客服能力。阿里小蜜基于阿里巴巴庞大的电商业务数据,利用 AI 技术实现对各类购物场景问题的快速响应。它不仅能解答商品咨询、订单查询等常规问题,还能根据用户历史购买行为和浏览记录,进行个性化推荐,如在用户咨询某类服装时,推荐搭配的饰品或其他相关商品,这都是智能导向设计理念在不同竞品中的体现,展示了 AI 产品根据用户需求不断进化和提供个性化服务的能力。但智能导向的设计对技术要求极高,算法的准确性、模型的稳定性等都会影响产品的实际表现。

三、核心任务侧重

(一)传统互联网产品经理

传统互联网产品经理主要解决连接问题,致力于打破信息壁垒,将人、信息和资源连接起来。以社交平台和电商平台为例,社交平台产品经理通过设计功能,方便用户社交互动,如设置好友添加、群组聊天、动态分享等功能,让用户能够便捷地与他人建立联系、交流信息;电商平台产品经理则搭建购物通道,促进商品流通,从商品展示、搜索功能、购物车到支付流程等一系列设计,都是为了让用户能够快速找到心仪商品并顺利完成交易。传统互联网产品经理在连接方面的工作,构建了互联网的基础生态,但随着技术发展,单纯的连接已难以满足用户对高效、智能体验的追求。

(二)AI 产品经理

吴恩达认为,AI 技术的核心在于提升效率和解决复杂问题。AI 产品经理主要聚焦于提升效率。像智能客服,借助自然语言处理技术和机器学习算法,快速准确回应用户问题,极大提高了客户服务效率。在制造业,AI 产品经理运用人工智能优化生产流程,实现自动化生产和质量检测,大幅提升生产效率和产品质量。据统计,采用 AI 技术的制造企业生产效率平均提高 20% 以上。在医疗领域,AI 产品经理参与研发的辅助诊断系统,能够快速分析医学影像等数据,帮助医生更高效地诊断疾病,提高诊断准确率。AI 产品经理通过运用 AI 技术,深入到各个行业的核心业务流程,解决复杂问题,提升整体效率,但在技术应用过程中,需要平衡技术与业务的关系,确保技术真正为业务创造价值。

四、目标用户群体

(一)传统产品

传统产品主要面向消费者,满足个人用户需求。例如音乐播放软件,围绕个人音乐收听习惯和娱乐需求设计,提供个性化推荐、高品质播放等功能,用户可以根据自己的喜好创建歌单、收藏歌曲,随时随地享受音乐带来的愉悦。在线教育产品针对个人用户的学习需求,提供丰富的课程内容、个性化学习计划制定等服务,帮助用户提升知识和技能。传统产品针对个人用户的需求,注重用户体验的个性化和便捷性,但在拓展企业级市场方面相对受限。

(二)AI 产品

吴恩达指出,AI 技术目前在企业级应用中有巨大潜力。当下 AI 产品主要面向企业服务。在金融领域,AI 产品为银行提供风险评估和反欺诈解决方案,通过分析大量金融交易数据,识别潜在风险和欺诈行为,保障金融安全;在医疗行业,辅助医生疾病诊断,提高医疗效率和准确性,如通过对医学影像的智能分析,帮助医生更快更准确地发现病变。市场调研机构数据显示,AI 产品在企业服务市场占比逐年增加,未来几年有望持续快速增长。AI 产品在企业级市场的应用,能够帮助企业优化业务流程、降低成本、提升竞争力,但也面临企业复杂业务场景、数据安全合规等诸多挑战。

五、技术要求差异

(一)传统产品经理的技术要求

在互联网创业热潮时期,大量来自不同专业背景(如生物、英语、化学等)的人员成为产品经理。他们大多不懂技术,工作重点集中在市场调研、用户需求分析、产品设计和项目管理等方面。与技术团队沟通时,主要依赖需求文档和口头交流,对技术实现细节了解较少。虽然不懂技术在一定程度上也能开展工作,但在与技术团队协作过程中,可能会出现沟通不畅、对技术可行性判断失误等问题,影响产品开发进度和质量。

(二)AI 产品经理的技术知识储备

吴恩达在其教学和研究中反复强调,扎实的技术基础是 AI 从业者的必备素养。AI 产品经理需要具备丰富的技术知识。要深入理解机器学习、深度学习原理,清楚迁移学习、增强学习的应用场景。迁移学习能将一个任务的知识迁移到相关任务,加快模型训练;增强学习则让智能体通过与环境交互学习最优策略。还要了解各类特征,像图像特征、情感特征等。在图像识别中,颜色、纹理、形状等图像特征帮助模型识别图像内容。同时,需掌握多种算法,如做推荐系统,要懂协同过滤、最新最热等常用算法。协同过滤根据用户历史行为推荐,最新最热算法则依据热度和时效性推荐。AI 产品经理只有具备深厚的技术知识储备,才能更好地与技术团队沟通协作,推动 AI 产品的研发和优化。

(三)技术能力对 AI 产品经理的重要性

AI 产品经理只有懂技术,才能知道如何用 AI 解决客户需求,确保产品靠谱。吴恩达也提到,在 AI 项目中,技术理解和跨团队协作至关重要。与数据科学家和工程师合作时,AI 产品经理凭借技术知识,能更好理解技术实现过程和难点,提出合理需求和解决方案。在评估产品可行性和性能时,技术知识也能帮助其确保产品满足用户需求和期望。比如评估图像识别产品,可通过了解图像特征提取算法和模型准确率等指标判断产品性能。技术能力是 AI 产品经理的核心竞争力之一,决定了其能否在复杂的 AI 产品研发过程中发挥关键作用。

六、业务理解与数据运用

(一)业务理解

吴恩达认为,深入理解业务是 AI 落地的关键。在 AI 产品方案讨论阶段,梳理业务流程是关键的第一步。以保险行业为例,从客户购买保险到保险公司支付赔偿金的流程中,AI 产品经理需分析各环节,找出可由 AI 解决的问题,如车险定损赔偿流程中的人工审核环节,可借助 AI 提高效率。同时,要梳理 AI 技术以匹配业务需求。各大招聘平台对 AI 产品经理的岗位要求中,业务场景理解能力、组织沟通能力和逻辑思考能力是高频要求。AI 产品经理需与数据科学家紧密合作,深入了解业务需求,确定数据收集、处理和分析方法。比如为保险行业设计 AI 产品,需收集大量车险照片数据,通过分析训练,让机器准确识别车辆破损情况,提升定损效率和准确率。相比传统产品经理,AI 产品经理对业务理解的深度和广度要求更高,需要将业务与技术紧密结合。

(二)数据和模型选择

吴恩达强调数据是 AI 的燃料,优质数据和合适模型是 AI 成功的基础。确定产品方案后,传统产品经理通常直接画原型图,而 AI 产品经理需先明确让机器识别证件或车辆破损所需的数据和模型。数据方面,通俗来讲,输入大量破损或正常图片训练机器,以提高精准度。但照片数据可能因遮挡、背景、书写规范等因素影响模型精准度。例如北京某保险科技公司收集车险照片数据时,因照片质量参差不齐,模型准确率仅 70% 左右,经筛选清洗数据,去除模糊、遮挡和背景复杂的照片后,准确率提升到 85%。模型方面,要选择适合业务场景的算法。不同的业务场景对算法的要求不同,如推荐系统适合协同过滤算法,图像识别适合卷积神经网络算法等。AI 产品经理需要在众多数据和模型中做出正确选择,以保障产品性能。

综上所述,传统产品经理和 AI 产品经理在需求洞察、产品设计、核心任务、目标用户、技术要求以及业务理解与数据运用等方面都存在明显差异。随着 AI 技术的不断发展,AI 产品经理将在推动各行业数字化转型和智能化升级中发挥越来越重要的作用,而传统产品经理也需要不断学习和适应新的技术趋势,提升自身能力,以应对行业变革带来的挑战。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值