tokenizer分词器中的BPE分词方法的原理、样例、代码示例

本文介绍了BytePairEncoding(BPE)分词方法,它通过合并最常见的字符对形成子词,处理未知词汇、减小词汇表大小、提升语言模型的泛化能力和适应不同语言任务。BPE算法通过观察字符间的关联学习高效分词,特别适合大规模文本数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Byte Pair Encoding(BPE):

想象一下你正在玩一种叫做“文字乐高”的游戏。在这个游戏中,你有很多小块,每个小块上写着一个字母或汉字。你的任务是用这些小块来构建单词或句子。开始时,你只能用单个字母或汉字的小块。但是游戏规则允许你找出那些经常一起出现的字母或汉字对,然后把它们合并成一个新的、更大的小块。随着游戏的进行,你可以创建越来越多的这种复合小块,从而更快、更高效地构建单词或句子。

BPE(Byte Pair Encoding)分词方式就像这个游戏。它的核心思想是在文本中找到最常见的字符对(比如在英文中可能是“th”、“er”等,在中文中可能是常见的词组或双字词),然后将这些字符对合并成一个新的单位。通过反复执行这个过程,我们可以将常见的字符对或字符序列合并成更长的序列,这些序列有时可以是完整的词语,有时可能是词语的一部分。

这个方法的一个优点是,它可以自动适应文本中的语言模式,而不需要预先定义词汇表。这就意味着,即使遇到了文本中从未出现过的新词,BPE 也有可能通过已经学到的字符序列来理解和处理这个新词。例如,如果 BPE 学会了“喜欢”和“吃”这两个序列,那么即使它从未见过“喜欢吃”这个短语,它也能够将其分解为已知的部分并加以理解。

总的来说,BPE 分词就像是通过观察和学习文字之间的“友谊”——哪些字母或汉字喜欢经常待在一起——然后通过将这些常见的组合“粘合”起来,以更智能、更灵活的方式来理解和处理语言。这种方法特别适用于处理大规模文本数据,能够有效地减小模型的复杂度,同时保持对文本的良好理解。

BPE的特点

Byte Pair Encoding (BPE) 算法最初是作为一种数据压缩技术被提出的。然而,在自然语言处理(NLP)领域,BPE 被重新发现并用作一种有效的子词分词方法,特别是在处理语言模型和机器翻译等任务时。提出 BPE 用于 NLP 的原因主要有以下几点:

处理未知词汇: 传统的词汇表方法面临一个挑战,即如何处理训练数据中未出现的单词(即未知词汇或 OOV,Out-Of-Vocabulary)。BPE 方法通过将单词分解为更小的单位(子词)来解决这个问题。即使是未见过的单词,也有可能由已见过的子词组合而成,因此模型能够更好地处理和理解这些新单词。

减小词汇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值