- 博客(85)
- 资源 (3)
- 问答 (1)
- 收藏
- 关注
原创 协同过滤基础——基线预测器(Baseline Predictors)
本文介绍了协同过滤推荐系统中的基线预测器(Baseline Predictor),用于消除用户和物品的系统性偏差。基线预测器通过公式$b_{ui}=μ+b_u+b_i$,结合全局平均分$μ$、用户偏差$b_u$和物品偏差$b_i$来预测评分。文章详解了两种参数估计方法:正则化最小二乘法和分步估计法,并阐述了基线预测器在信号分离、可解释性等方面的核心价值。该方法能有效过滤评分中的"噪声",为后续精准推荐奠定基础。
2025-08-05 23:19:41
956
原创 跟着顶刊学写论文-摘要1
《顶刊论文摘要写作范式解析》以ICLR2025论文为例,系统拆解了摘要写作的黄金结构:首先通过实证研究引出技术价值(①),转折指出领域局限(②),继而挑战传统认知(③),展示创新发现(④-⑤)。基于发现提出新方法(⑥),详述模型架构(⑦),实证验证效果(⑧),延伸分析特性(⑨),最终升华跨领域意义(⑩)。该范式呈现清晰的"问题发现-方法创新-验证分析"逻辑链。
2025-08-04 23:00:47
685
原创 Word2Vec 模型原理
Word2Vec是一种通过浅层神经网络学习词向量的模型,由谷歌团队于2013年提出。它采用单隐藏层结构,将词语映射到低维连续空间,解决了传统one-hot编码的维度灾难和语义孤立问题。核心包含CBOW和Skip-gram两种架构:CBOW通过上下文预测中心词,适合高频词;Skip-gram用中心词预测上下文,擅长捕捉低频词。模型通过最大化预测概率(最小化负对数似然损失)训练,最终输出词向量矩阵。这些具备语义关联的词向量推动了NLP任务的发展,在文本分类、情感分析等领域广泛应用。
2025-08-04 14:10:55
690
原创 奇异值分解(singular value decomposition,SVD)
本文介绍了奇异值分解(SVD)的定义、计算过程、应用,以及在数据压缩和图片压缩案例中的实战演示
2025-07-09 21:22:41
755
原创 推荐系统中的相似度
推荐系统中常用的相似度计算方法比较 推荐系统的核心在于精准计算对象间的相似度。本文介绍了四种常用方法:1)余弦相似度,通过向量方向衡量相似性,适合关注趋势而非绝对值的场景;2)皮尔逊相关系数,修正均值影响,能更好识别线性相关关系;3)欧氏距离,计算数值绝对差异,需配合归一化处理;4)Jaccard相似度,专用于集合数据,计算元素重叠程度。不同方法各有侧重,实际应用中需根据数据类型和业务需求选择合适方法,有时需组合使用以获得最佳推荐效果。
2025-07-08 20:03:28
823
原创 【了解】通感算一体化网络
以智慧城市、智慧交通、智能家居为代表的 6G 典型应用场景中存在着大量能力高度差异化的智能自动化设备,对极低时延、极高可靠性、超大带宽、海量接入等方面的通信需求越发严苛,智能自动化类型的应用对感知能力也提出了高精度、高分辨率等要求。该网络内的各网元设备通过通感算软硬件资源的协同与共享,实现多维感知、协作通信、智能计算功能的深度融合、互惠增强,进而使网络具备新型闭环信息流智能交互与处理及广域智能协作的能力,为 6G 的智慧城市、智慧交通、智能家居等典型应用场景提供支持。
2025-05-06 22:13:31
1388
原创 【了解】数字孪生网络(Digital Twin Network,DTN)
是可以使用 “用户意图” 进行管理的网络,它能够识别和接收操作员或用户的意图,并根据用户意图自主地配置和调整自己,从而实现预期的结果,而无需用户指定用于如何实现结果的详细技术步骤。越来越为产业界所重视。“基于意图的网络”、“自动驾驶网络”、“零接触 (Zero-Touch) 网络”等概念和技术相继被业界提出和推广,希望借助网络智能化技术,实现网络自动化和自主化运行的愿景。,实现物理网络与孪生网络的实时交互映射,帮助网络以更低成本、更高效率、更小的现网影响部署各种网络应用,助力网络实现极简化和智慧化运维。
2025-05-05 21:51:37
1357
原创 阅读论文笔记《Translating Embeddings for Modeling Multi-relational Data》
TransE 模型最大的优点就是在链接预测任务中表现极为优秀。它不仅能够准确地预测出实体之间的关系,而且在处理大规模数据集时,具有较高的效率和可扩展性。同时,模型的简单性使得它能够很好地泛化,在学习新关系时速度快,不需要对已经训练好的嵌入进行复杂的修改。
2025-02-19 21:38:45
1191
原创 阅读论文笔记《Efficient Estimation of Word Representations in Vector Space》
这篇文章写于2013年,对理解 word2vec 的发展历程挺有帮助。本文仅适用于 Word2Vect 的复盘。
2025-02-15 14:06:55
1530
原创 【总结报告】基于归纳知识图嵌入的元知识转移(Meta-Knowledge Transfer for Inductive Knowledge Graph Embedding
本文对论文 Meta-Knowledge Transfer for Inductive Knowledge Graph Embedding 做了简单的总结,主要总结了元知识的建模和获取这两部分。
2024-10-30 23:20:38
1031
原创 Python 基础:使用 unittest 模块进行代码测试
在本文中,我们学习了:如何使用模块unittest中的工具来为函数和类编写测试,如何编写继承的类,以及如何编写测试方法,以核实函数和类的行为符合预期;如何使用方法setUp()来根据类高效地创建实例并设置其属性,以便在类的所有测试方法中使用。
2024-06-27 20:29:05
1076
1
原创 Python 基础:用 json 模块存储和读取数据
用户关闭程序时,往往需要保存用户提供的信息,一种简单的方式是使用(JavaScript Object Notation)模块。这个模块最初是为 JavaScript 开发的,但随后成了一种常见格式,被包括 Python 在内的众多语言采用。这个模块让我们能够将简单的 Python 数据结构转储到文件中,并在程序再次运行时加载该文件中的数据。我们还可以使用 json 在 Python 程序之间分享数据。
2024-06-27 18:08:58
624
原创 Transformer 结构
这个部分类似于我们最开始讲的端到端模型中的注意力机制,它是为了帮助 Decoder 端每一步的生成都可以关注和整合每个 Encoder 端每个位置的信息。和 Encoder block 一样,这样的 Decoder block 也可以进行堆叠,如上图我右方标记了“Nx”。在原论文中,Decoder block 也是一共堆叠了 6 层。
2024-06-27 14:38:23
1735
原创 Python 基础:异常
异常是程序运行时可能遇到的非预期情况,如除以零或文件未找到等。使用try-except代码块可以捕获并处理这些异常,防止程序因错误而中断而代码块则进一步允许在无异常发生时执行特定代码。静默失败是指程序在遇到错误时不显示任何错误信息,继续执行。合理使用异常处理机制,可以提高程序的健壮性和用户体验。
2024-06-20 20:00:06
1089
原创 Python 基础:文件
虽然 open() 和 open() 搭配使用也可以,但是并非在任何情况下都能轻松确定关闭文件的恰当时机。如果非要在 with代码块外访问的话,可以先在 with 代码块内将文件的各行存储在一个。如果指定的文件不存在,Python 将创建一个空文件。为此,我们可以一次性读取文件的全部内容,也可以以每次一行的方式逐步读取。让我们只管打开文件,并在需要时使用它,Python 自会在合适的时候。如果要给文件添加内容,而不是覆盖原有的内容,可以以附加模式(要以每次一行的方式检查文件,可对文件对象使用。
2024-06-19 20:04:04
1084
原创 BPE (Byte-Pair Encoding) Tokenization
我们其实也可以直接将每个单词作为一个单元来进行后续的训练,但是这样当我们处理新单词的时候就没有办法给出一个合适的表示,可能许多没有见过的所有的字都公用同一个表示。将文本数据集中的所有实例中的选定字符对替换为新创建的词元,从 step 2 进行重复,直到达到预定的词汇表大小或无法进一步合并字符对。然而,作为真人的我们第一次看到生词的时候,并不是对它一无所知的,我们可以通过生词的组成来进行猜测意思。最终生成的词汇表包含了所有 token,包括原始的字符和合并后的 token。如果我们要处理一个没有见过的单词。
2024-06-19 13:45:18
1247
原创 Python 基础:类
定义一个类非常简单,只需要使用class关键字,后面跟着类名(首字母大写),然后是冒号。类体中的代码块定义了类的属性和方法。class Car:return f"在上面的例子中,Car是一个类,它有三个属性:makemodel和year。__init__(开头结尾都有两个下划线)方法是一个特殊的方法,被称为类的构造器,它在创建类的新实例时自动调用。在这个方法中,形参self必不可少。
2024-06-16 20:26:21
3234
2
原创 注意力机制
给定一个查询向量(query vector)和一组值向量(value vectors),注意力机制根据query计算value的加权和。计算相关性给定一个查询向量(query vector)和一组值向量(value vectors),首先计算query与每个value之间的相关性。通常可以使用点积、内积、余弦相似度等方法来度量相关性。计算结果可以表示为一个得分向量,其中每个得分表示query与对应value的相关性。计算注意力权重通过对得分向量进行归一化,可以得到value。
2024-06-16 11:10:41
753
原创 Seq2seq、编码器&解码器神经网络
Seq2seq(Sequence to Sequence)的作用是将一种序列转换为另一种序列,比如将英文句子翻译为中文句子,或者将一篇文章进行概括。一种解决 Seq2seq 问题的方法是编码器-解码器模型。下面我们以英语句子翻译为西班牙句子为例来进行介绍。
2024-06-10 17:09:20
1301
原创 大模型基础
从GPT-3 (1750亿个参数) 中,我们可以看到大规模预训练语言模型中的丰富知识。之所以选择预训练语言模型,是因为之所以选择预训练语言模型在 GLUE 上的结果优于人类的表现,这反映了预训练语言模型的语言理解能力。基于以上的特点,使用预训练的语言模型现在是各种 NLP 任务的标准,与语言模型相关的研究也在 2018 年迅速发展了起来。在GPT-3中,许多复杂的任务,如编写代码和下棋,可以转化为基于预先训练的语言模型的动作序列生成。第二步:然后,我们可以使用特定任务的训练数据对预先训练的语言模型进行。
2024-05-05 11:45:38
487
原创 自然语言处理基础
自然语言处理(Natural Language Processing,简称NLP)是计算机科学与人工智能领域的一个重要研究方向,目的是让计算机能够理解、解析、生成和处理人类的自然语言。自然语言处理有着非常重要的意义,其一,我们认为人类语言是人类智能一个非常重要的体现;其二,NLP 是人工智能能够通过图灵测试的一个非常重要的工具。其中图灵测试(最开始的名字是 imitation game)是判断机器是否智能的一个非常重要的手段。
2024-05-03 18:56:09
1415
1
原创 24二战上岸北邮计算机经验贴(初试+复试超详细)
我认为有直系学长学姐领路真的会少走很多弯路。我现在写下这个经验贴呢,也希望帮助到后面备考北邮的学子!也欢迎大家加入北邮计算机群进行讨论学习,里面都是一些同样备考的同学,还有很多在读北邮热心的学长学姐,会分享很多重要的北邮计算机考情资讯以及复试要注意的东西。
2024-04-25 16:27:42
6406
原创 SiteSpace 使用方法笔记
CiteSpace 是一个用于可视化和分析科学文献的工具。它可以从科学文献库中提取关键词、作者、机构和引用关系等信息,并将其可视化为图形网络。一些使用案例。
2024-04-07 23:50:38
1527
原创 问题与解决:用 jQuery Ajax 发送请求,后端获取 session 为空
最近在做错题集的 web 开发课程设计,根据以往的经验前端和后端的数据我大部分都在用 session 进行传输。最近刚学习并运用了 Ajax 技术,当我像以前一样在后端更新session时,发现前端没有获取新的session数据,由此我打算认真来学习一下session,顺便将已有的项目整理一下。希望路过的大佬们可以指点一二,同时也希望给遇到同样困惑的小伙伴提供帮助🙂
2022-05-30 18:26:52
1941
计算机考研初试资料(英语一)
2024-04-03
pygame怎么在中文输入法下捕获字母按键?
2024-07-05
jeesite导入数据表并初始化数据错误显示BUILD FAILURE
2021-03-28
TA创建的收藏夹 TA关注的收藏夹
TA关注的人