卷积积分&状态方程

卷积概念介绍:主要描述了一个函数与另一个函数的“卷积”,表示为其中一个函数沿着纵轴翻转并平移后与另一个函数的乘积在所有可能的平移下的积分。

(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau) \cdot g(t - \tau)

电路冲激响应为

状态方程:“ 状 态 " 是 系 统 论 中 的 一 个 基 本 概 念 , 在 电 路 理 论 中 , 状 态 是 指 在 某 给 定 时 刻 电 路 必 须 具 备 的 最 少 量 的 信 息 , 它 们 和 从 该 时 刻 开 始 的 任 意 输 人 一 起 就 足 以 完 全 确 定 今 后 该 电 路 在 任 何 时 刻 的 性 状 。 状 态 变 量 就 是 电 路 的 一 组 独 立 的 动 态 变 量 , 它 们 在 任 何 时 刻 的 值 组 成 了 该 时 刻 的 状 态 。 电 容 上 的 电 压 ( 或 电 荷 qc ) 和 电 感 中 的 电 流 iL( 或 磁 通 链 ψL 就 是 电 路 的 状 态 变 量 。 对 状 态 变 量 列 出 的 一 阶 微 分 方 程 称 为 状 态 方 程 。 因 此 , 如 果 已 知 状 态 变 量 在 t0时 的 值 , 而 且 已 知 自t0 开 始 的 外 施 激 励 , 就 能 唯 一 地 确 定t>t0 后 电 路 的 全 部 性 状

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值