卷积概念介绍:主要描述了一个函数与另一个函数的“卷积”,表示为其中一个函数沿着纵轴翻转并平移后与另一个函数的乘积在所有可能的平移下的积分。 电路冲激响应为 状态方程:“ 状 态 " 是 系 统 论 中 的 一 个 基 本 概 念 , 在 电 路 理 论 中 , 状 态 是 指 在 某 给 定 时 刻 电 路 必 须 具 备 的 最 少 量 的 信 息 , 它 们 和 从 该 时 刻 开 始 的 任 意 输 人 一 起 就 足 以 完 全 确 定 今 后 该 电 路 在 任 何 时 刻 的 性 状 。 状 态 变 量 就 是 电 路 的 一 组 独 立 的 动 态 变 量 , 它 们 在 任 何 时 刻 的 值 组 成 了 该 时 刻 的 状 态 。 电 容 上 的 电 压 ( 或 电 荷 qc ) 和 电 感 中 的 电 流 iL( 或 磁 通 链 ψL 就 是 电 路 的 状 态 变 量 。 对 状 态 变 量 列 出 的 一 阶 微 分 方 程 称 为 状 态 方 程 。 因 此 , 如 果 已 知 状 态 变 量 在 t0时 的 值 , 而 且 已 知 自t0 开 始 的 外 施 激 励 , 就 能 唯 一 地 确 定t>t0 后 电 路 的 全 部 性 状