二阶电路零输入&零状态响应

文章探讨了二阶电路在零输入条件下的响应,分析了不同根(实数根和共轭复数根)对应的电容电压变化趋势及电流特性,特别关注了非震荡放电与震荡放电两种情况以及临界条件R=2的特殊点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二阶电路零输入响应

由上图可得:

i(t) = -C \cdot \frac{dUc}{dt}

V_L(t) = L \cdot \frac{di(t)}{dt}

故-Uc+Ur+Ul=0

Uc+RC \cdot \frac{dUc}{dt}+LC \cdot \frac{d^2Uc}{dt^2}=0

Uc = A e^{pt}

LCP*P+RCP+1=0;

p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}=\frac{-RC \pm \sqrt{(RC)^2 - 4LC}}{2LC}

由此可得

由电容的电压不能突变和KCL得(t=0,-C \cdot \frac{dUc}{dt}=i):

1.当p为两个不等的负实根,非震荡放电(R>2\sqrt{R/C})

对Uc求导:Uc'=[UO/(P2-P1)][P1P2(e^{p1}-e^{p2})]<0,故Uc为单调减小

对I定性分析:P2-P1<0,(e^{p1}-e^{p2})>0,故i>0

当p为一对共轭复数,震荡放电(R<2\sqrt{R/C})

当P1,P2为相同值时,临界情况(R=2\sqrt{R/C})

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值