让复杂决策流程清晰可控。
有一次在梳理一个跨部门审批流程时——
不同部门有不同理解,口径不一致,审批路径在每个系统里都不一样。运营说流程卡在财务,财务说是系统问题,系统说是数据不对……现场一团乱麻。
我说:“我们先做一个决策模型吧,把每一步决策主体、触发条件、输入输出都理出来。”
因为,我相信
没有清晰的决策模型,组织就像在迷雾中航行,只能靠运气前行。
而一张结构化的决策模型,能让每一步“该由谁决、基于什么决、决出什么”都变得清晰可见。
什么是 Decision Modelling?
Decision Modelling(决策建模)不仅是画决策树,
它是一个更系统的方法,
它是:
- 识别、表达并结构化复杂决策逻辑的过程
- 将决策流程显性化、规范化,减少依赖个人经验
- 帮助系统自动决策,提升速度和一致性
一句话:把模糊的“拍脑袋决策”变成标准、透明、可执行的体系。
我常用 Decision Modelling 的应用场景
- 定义复杂业务规则(如贷款审批、保险理赔)
- 支持系统自动化决策引擎(如推荐系统、风控系统)
- 统一不同部门/角色的决策口径
- 为AI/机器学习提供清晰的决策基础
- 优化决策链条,提高决策效率与准确率
我的 Decision Modelling 流程
- 界定决策范围
- 明确本次要建模的决策是什么?
- 是单点决策还是决策网络?涉及哪些关键变量?
- 识别决策要素
- 决策输入(Input):哪些数据、条件会影响决策?
- 决策知识(Knowledge Source):依据哪些规则、政策、经验?
- 决策输出(Output):需要给出什么决策结果或行动建议?
- 拆解决策结构
- 大决策通常由多个小决策组成
- 梳理决策依赖关系,形成决策链或决策图
- 绘制决策模型
- 使用 DMN(Decision Model and Notation) 标准
- 绘制决策表(Decision Table)、决策需求图(DRD)
- 保持清晰、直观,方便业务与技术人员理解
- 定义决策规则
- 明确每种情况对应的具体决策输出
- 避免规则冲突、覆盖死角
- 验证与优化
- 和业务部门一起验证规则的准确性
- 进行测试案例演练,检验决策模型的完整性与合理性
一个真实案例
在帮一家金融科技公司设计自动化信贷审批系统时,
最初审批标准散落在各种政策文档、老员工经验中,混乱无比。
我主导用 Decision Modelling 方法:
- 列出所有可能影响审批的因素(如信用评分、收入证明、负债比)
- 建立决策表,清晰列出各类组合下的审批结果(通过/补充材料/拒绝)
- 形成决策需求图(哪些小决策影响最终审批)
最终,不仅审批标准被显性化,
而且整个审批流程自动化率提升了 40%,审批时效缩短了 60%。
Decision Modelling 带给我的价值
- 让业务规则系统化、标准化、可追溯
- 为自动化、智能化决策打好基础
- 减少主观判断,提升决策的一致性与透明度
- 快速适应政策变更,只需调整决策模型,不必改系统逻辑
我的经验建议
- 决策范围要聚焦,一次建模不要贪大求全
- 建模一定要以实际案例驱动,纸上谈兵容易出错
- 坚持可视化表达,图和表让所有人都能看懂
- 设定好规则冲突检测机制,避免逻辑矛盾
- 定期回顾决策模型,跟随业务变化及时调整
最后的共勉
在变化加速的商业环境中,
掌握 Decision Modelling,意味着掌握了驾驭复杂决策的能力。
它让我在充满不确定性的环境中,
依然可以冷静推演,系统应对,
成为那个能让混乱变清晰,让犹豫变果断的人。