Decision Modelling(决策建模):业务分析师的“选择导航仪”

让复杂决策流程清晰可控。

有一次在梳理一个跨部门审批流程时——

不同部门有不同理解,口径不一致,审批路径在每个系统里都不一样。运营说流程卡在财务,财务说是系统问题,系统说是数据不对……现场一团乱麻。

我说:“我们先做一个决策模型吧,把每一步决策主体、触发条件、输入输出都理出来。”

因为,我相信

没有清晰的决策模型,组织就像在迷雾中航行,只能靠运气前行。

而一张结构化的决策模型,能让每一步“该由谁决、基于什么决、决出什么”都变得清晰可见。


什么是 Decision Modelling?

Decision Modelling(决策建模)不仅是画决策树,

它是一个更系统的方法,

它是:

  • 识别、表达并结构化复杂决策逻辑的过程
  • 将决策流程显性化、规范化,减少依赖个人经验
  • 帮助系统自动决策,提升速度和一致性

一句话:把模糊的“拍脑袋决策”变成标准、透明、可执行的体系。


我常用 Decision Modelling 的应用场景

  • 定义复杂业务规则(如贷款审批、保险理赔)
  • 支持系统自动化决策引擎(如推荐系统、风控系统)
  • 统一不同部门/角色的决策口径
  • 为AI/机器学习提供清晰的决策基础
  • 优化决策链条,提高决策效率与准确率

我的 Decision Modelling 流程

  1. 界定决策范围
    • 明确本次要建模的决策是什么?
    • 是单点决策还是决策网络?涉及哪些关键变量?
  2. 识别决策要素
    • 决策输入(Input):哪些数据、条件会影响决策?
    • 决策知识(Knowledge Source):依据哪些规则、政策、经验?
    • 决策输出(Output):需要给出什么决策结果或行动建议?
  3. 拆解决策结构
    • 大决策通常由多个小决策组成
    • 梳理决策依赖关系,形成决策链或决策图
  4. 绘制决策模型
    • 使用 DMN(Decision Model and Notation) 标准
    • 绘制决策表(Decision Table)、决策需求图(DRD)
    • 保持清晰、直观,方便业务与技术人员理解
  5. 定义决策规则
    • 明确每种情况对应的具体决策输出
    • 避免规则冲突、覆盖死角
  6. 验证与优化
    • 和业务部门一起验证规则的准确性
    • 进行测试案例演练,检验决策模型的完整性与合理性

一个真实案例

在帮一家金融科技公司设计自动化信贷审批系统时,

最初审批标准散落在各种政策文档、老员工经验中,混乱无比。

我主导用 Decision Modelling 方法:

  • 列出所有可能影响审批的因素(如信用评分、收入证明、负债比)
  • 建立决策表,清晰列出各类组合下的审批结果(通过/补充材料/拒绝)
  • 形成决策需求图(哪些小决策影响最终审批)

最终,不仅审批标准被显性化,

而且整个审批流程自动化率提升了 40%,审批时效缩短了 60%。


Decision Modelling 带给我的价值

  • 让业务规则系统化、标准化、可追溯
  • 为自动化、智能化决策打好基础
  • 减少主观判断,提升决策的一致性与透明度
  • 快速适应政策变更,只需调整决策模型,不必改系统逻辑

我的经验建议

  • 决策范围要聚焦,一次建模不要贪大求全
  • 建模一定要以实际案例驱动,纸上谈兵容易出错
  • 坚持可视化表达,图和表让所有人都能看懂
  • 设定好规则冲突检测机制,避免逻辑矛盾
  • 定期回顾决策模型,跟随业务变化及时调整

最后的共勉

在变化加速的商业环境中,

掌握 Decision Modelling,意味着掌握了驾驭复杂决策的能力。

它让我在充满不确定性的环境中,

依然可以冷静推演,系统应对,

成为那个能让混乱变清晰,让犹豫变果断的人。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值