datawhale-AI夏令营-大模型技术:baseline2精读分享直播

目录

1.数据集制作

1.1 环境配置

1.2 数据处理Prompt(抽取数据的关键)

1.3 训练数据集制作

1.4 测试集数据制作

2.模型微调

3.微调推理

4.提交


1.数据集制作

1.1 环境配置

进行环境配置,下载两个库:spark_ai_python和websocket-client

!pip install --upgrade spark_ai_python websocket-client

 此处定义的chatbot函数和上一篇中测试星火大模型是否可以正常使用类似,使用讯飞星火的官方API,因此将这一部分和上一篇一样作为环境测试理解

from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage
import numpy as np
from tqdm import tqdm


def chatbot(prompt):
    #星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
    SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
    #星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
    SPARKAI_APP_ID = ''
    SPARKAI_API_SECRET = ''
    SPARKAI_API_KEY = ''
    #星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
    SPARKAI_DOMAIN = 'generalv3.5'
    spark = ChatSparkLLM(
        spark_api_url=SPARKAI_URL,
        spark_app_id=SPARKAI_APP_ID,
        spark_api_key=SPARKAI_API_KEY,
        spark_api_secret=SPARKAI_API_SECRET,
        spark_llm_domain=SPARKAI_DOMAIN,
        streaming=False,
    )
    messages = [ChatMessage(
        role="user",
        content=prompt
    )]
    handler = ChunkPrintHandler()
    a = spark.generate([messages], callbacks=[handler])
    return a.generations[0][0].message.content

1.2 数据处理Prompt(抽取数据的关键)

相对于前一篇来说,此处对需要抽取的任务进行总结,分为4个任务块,没有把原文放进去直接分析,比较省时精确,同时提示思路:也许可以尝试做4个promot,结果是否更加精确

promot思路:身份确认-群聊对话-分析数据-格式限制

content = ''
prompt = f'''
你是一个数据分析大师,你需要从群聊对话中进行分析,里面对话的角色中大部分是客服角色,你需要从中区分出有需求的客户,并得到以下四类数据。

****群聊对话****
{content}

****分析数据****
客户基本信息:需要从中区分出客户角色,并得到客户基本信息,其中包括姓名、手机号码、邮箱、地区、详细地址、性别、年龄和生日
客户意向与预算信息: 客户意向与预算信息包括咨询类型、意向产品、购买异议点、预算是否充足、总体预算金额以及预算明细
客户购买准备情况:户购买准备情况包括竞品信息、客户是否有意向、客户是否有卡点以及客户购买阶段
跟进计划信息: 跟进计划信息包括参与人、时间点和具体事项,这些信息用于指导销售团队在未来的跟进工作中与客户互动

****注意****
1.只输出客户基本信息、客户意向与预算信息、客户购买准备情况、跟进计划信息对应的信息,不要输出无关内容
2.不要输出分析内容
3.输出内容格式为md格式
'''

1.3 训练数据集制作

 官方案例的jsonl_data, 是用来训练的规范单行数据,需要由训练数据组成一个jsonl文件(每行是一个json数据的文件),格式如下:

jsonl_
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值