#LeetCode 509. Fibonacci Number
#LeetCode 509. 视频讲解:手把手带你入门动态规划 | LeetCode:509.斐波那契数_哔哩哔哩_bilibili
动态规划五部曲:
1. 确定dp[i] 的含义,在这里dp[i] 代表第i 个数值。
2. 递推公式,题目中已经给出递推公式,dp[i] = dp[i-1] + dp[i-2]
3. dp数组应该如何初始化,题目给出了第0 、1 个的数值,dp[0] = 0,dp[1] = 1
4. 遍历顺序,是从前向后
5. 打印dp 数组,可以帮助检查
动态规划代码:
class Solution {
public int fib(int n) {
if (n <= 1) {
return n;
}
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
#LeetCode 70. Climbing Stairs
#LeetCode 70. 视频讲解:带你学透动态规划-爬楼梯(对应力扣70.爬楼梯)| 动态规划经典入门题目_哔哩哔哩_bilibili
题目可以通过列出每一个楼梯情况来总结递推公式。例如:4 个楼梯的情况,就是3 个楼梯时多走一步一个台阶和2 个楼梯是一次多走两个台阶,所以是3 个楼梯情况加2 个楼梯的情况。
动态规划五部曲:
1. 确定dp[i] 的含义,在这里dp[i] 代表i 个楼梯的时候有多少种方法。
2. 递推公式,根据列出的情况总结,dp[i] = dp[i-1] + dp[i-2]
3. dp数组应该如何初始化,在0 个台阶的时候,其实是没有需要走的情况,但为了方便后面的情况考虑,选择将dp[0] = 1,dp[1] = 1,这样dp[2] = 2 是成立的。
4. 遍历顺序,是从前向后
5. 打印dp 数组,可以帮助检查
代码:
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i ++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
}
#LeetCode 746. Min Cost Climbing Stairs
#LeetCode 746. 视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯_哔哩哔哩_bilibili
动态规划五部曲:
1. 确定dp[i] 的含义,在这里dp[i] 代表到达i 个楼梯的时候的花费。
2. 递推公式,根据列出的情况总结,dp[i] = Math.min (dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
3. dp数组应该如何初始化,起始位置可以是0 也可以是1 ,所以dp[0] = 0, dp[1] = 0
4. 遍历顺序,是从前向后
5. 打印dp 数组,可以帮助检查
代码:
class Solution {
public int minCostClimbingStairs(int[] cost) {
int length = cost.length;
int[] dp = new int[length + 1];
dp[0] = 0;
dp[1] = 0;
for (int i = 2; i <= length; i++) {
dp[i] = Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
}
return dp[length];
}
}