穷举算法基本思想
穷举算法的基本思想就是从所有可能的情况中搜索正确的答案,其执行流程如下:
(1)对于一种可能的情况,计算其结果;
(2)判断结果是否满足要求,如果不满足,则执行第(1)步来搜索下一种可能的情况;
如果满足要求,则表示寻找到一个正确的答案。
在使用穷举算法时,需要明确的是问题答案的范围,这样才可以在指定范围内搜索答案。指定范围之后,即可使用循环语句和条件判断语句逐步验证候选答案的正确性,从而得到所需要的正确答案。
穷举算法示例
鸡兔同笼问题
穷举算法是最基本的算法思想之一,下面通过一个简单的例子来看穷举算法的应用。鸡兔同笼问题最早记载于1500年前的《孙子算经》,这是我国古代一个非常有名的问题。鸡兔同笼的原文记载如下:
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
这个问题的大致意思是:在一个笼子里关着若干只鸡和若干只兔,从上面数共有35个头;从下面数共有94只脚。问笼中鸡和兔的数量各是多少?
穷举算法思路
通过对题目分析可以知道鸡的数量应该为0~35的数。这样,可以使用穷举法来逐个判断是否符合条件,从而搜索答案。
穷举算法代码
#include <iostream>
using namespace std;
int qiongju(int head, int foot, int* chicken, int* rabbit)
{
int re = 0;
int i, j = 0;
for (i = 0;i <= head;i++)
{
j = head - i;
if (i * 2 + j * 4 == foot)
{
re = 1;
*chicken = i;
*rabbit = j;
}
}
return re;
}
int main()
{
int chicken, rabbit, head, foot, re;
bool panduan = 0;
do {
cout << "鸡兔同笼问题!\n";
cout << "请输入头总共有多少个?\n";
cin >> head;
cout << "请输入脚总共有多少个?\n";
cin >> foot;
if (foot <= 0 || head <= 0)
{
panduan = 1;
cout << "输入有误,请重新输入!" << endl;
}
} while (panduan == 1);
re = qiongju(head, foot, &chicken, &rabbit);
if (re == 1)
{
cout << "鸡总共有:" << chicken << endl;
cout << "兔总共有:" << rabbit << endl;
}
else
{
cout << "无法求解" << endl;
}
return 0;
}