缓存雪崩
原因
- 在一个较短的时间内,缓存中较多的key集中过期
- 此周期内请求访问过期的数据,redis未命中,redis向数据库获取数据
- 数据库同时接收到大量的请求无法及时处理
- redis大量请求被积压,开始出现超时现象
- 数据库流量激增,数据库崩溃
- 重启后仍然面对缓存中无数据可用
- redis服务器资源被严重占用,redis服务器崩溃
- redis集群呈现崩塌,集群瓦解
- 应用服务器无法得到数据响应请求,来自客户端的请求数量越来越多,应用服务器崩溃
- 应用服务器,redis,数据库全部重启,效果不理想
解决方案(道)
-
更多的页面静态化处理
-
构建多级缓存架构
nginx缓存+redis缓存+ehcache缓存
-
检测mysql严重耗时业务进行优化
对数据库的瓶颈查询:例如超时查询、耗时较高事务等
-
灾难预警机制
监控redis服务器指标性能
- cpu占用、cpu使用
- 内存容量
- 查询平均响应时间
- 线程数
-
限流、降级
短时间内牺牲一些客户体验,限制一部分请求访问,降低应用服务器压力,待业务低速运转后再逐步放开访问
解决方案(术)
-
LRU与LFU切换
-
数据有效期策略调整
- 根据业务数据有效期进行分类错峰,a类90分钟,b类80分钟,c类70分钟
- 过期时间使用固定时间+随机值的形式,稀释集中到期的key的数量
-
超热数据使用永久key
-
定期维护(自动+人工)
对即将过期数据做访问量分析
总结
缓存雪崩就是瞬间过期数据量太大,导致对数据库服务器造成压力。如果能够有效避免过期时间集中,可以有效解决雪崩现象的出现,配合其他策略一起使用,并监控服务器的运行数据,根据运行记录做快速调整
缓存击穿
- 系统平稳运行过程中
- 数据库连接量瞬间激增
- redis服务器无大量key过期
- redis内存平稳,无波动
- redis服务器cpu正常
- 数据库崩溃
问题排查
- redis中某个key过期,该key访问量巨大
- 多个数据请求从服务器直接压到redis后,均为命中
- redis在短时间内发起了大量对数据库的统一数据的访问
问题分析
- 单个key高热数据
- key过期
解决方案(术)
-
预先设定
以电商为例,每个商家根据店铺等级,指定若干款主打产品,在购物节期间,加大此类信息key的过期时长
购物节不仅仅指当天,以及后续若干天,访问值呈现逐渐降低的趋势
-
现场调整
监控访问量,对自然流量激增的数据延长过期时间或者设置永久key
-
后台刷新数据
启动定时任务,高峰期来临之前,刷新数据有效期,确保不丢失
-
二级缓存
设置不同的失效时间,保障不会同时淘汰就行
总结
缓存击穿就是单个高热数据过期的瞬间,数据访问量较大,未命中redis,发起了大量对同一数据的数据库访问,导致对数据库服务器造成压力。应对策略应该在业务数据分析与预防方面进行,配合运行监控与及时调整策略,毕竟单个key的过期监控难度较高,配合雪崩处理策略即可
缓存穿透
- 系统平稳运行过程中
- 应用服务器流量随着时间增量较大
- redis服务器命中率随着时间逐步降低
- redis内存平稳,内存无压力
- redis服务器cpu占用激增
- 数据库服务器压力激增
- 数据库崩溃
问题排查
- redis中大面积出现未命中
- 出现非正常url访问
问题分析
- 获取的数据在数据库不存在,数据库查询未得到对应数据
- redis获取到null数据未进行持久化,直接返回
- 下次此类数据到达重复上述过程
- 出现黑客攻击服务器
解决方案(术)
-
缓存null
对查询结果为null的数据进行缓存(长期使用,定期清理),设置短时限,例如30-60秒,最高5分钟
-
白名单策略
-
实施监控
实时监控redis命中率(业务正常范围时,通常会有一个波动值)与null数据的占比
- 非活动时段波动:通常检测3-5倍,超过5倍纳入重点排查对象
- 活动时段波动:通常检测10-50倍,超过50倍纳入重点排查对象
根据倍数不同,启动不同的排查流程。然后使用黑名单进行防控
-
key加密
问题出现后,临时启动防灾业务key,对key进行业务层传输加密服务,设定校验程序,过来的key校验
例如每天随机分配60个加密串,挑选2到3个,混淆到页面数据id中,发现访问key不满足规则,驳回数据访问
总结
缓存击穿访问了不存在的数据,跳过了合法数据的redis数据缓存阶段,每次访问数据库,导致对数据库服务器造成压力,通常此类数据的出现量是一个较低的值,当出现此类情况需要以毒攻毒,并及时报警,应对策略应该在预防方面多做文章
无论黑名单还是白名单都是对整体系统的压力,警报解除后应该尽快移除
可以使用布隆过滤器来解决缓存穿透问题
布隆过滤器就是一个判断数据存不存在的二进制数组
用0、1来表示数据存不存在
结构概览
优点
- 增加和查询元素的时间复杂度为:O(k)k为哈希函数的个数,时间复杂度与数据量大小无关
- 布隆过滤器不存储数据本身
- 哈希函数本身没有关系,方便硬件进行计算
缺点
- 很难去做删除操作,布隆过滤器去做增加操作的时候,会使用多个哈希函数去计算出多个数组下标,不同的数据可能存在相同的数组下标,去做删除操作时,一个数据的删除可能会引起多个数据的失效
- 可能会存在误判操作,经过一系列的哈希运算,可能有些数据是不存在于二进制集合中的,但是其hash值与其他相重复,进而判断出,该数据是存在的,即出现了误判操作
误判率
在使用布隆过滤器api时,有个参数会让我们去设置误判率,当然这个参数的设置会对结果的误判率有影响的,结果的误判率是趋近于这个值的,但是这个值并不是设置的越少越好,这个值无限趋近于0的话,是会使我们的误判数趋近于0,但伴随的是复杂的计算(误判率越低,需要的hash函数越多),会影响系统的性能,具体设置的数,应根据业务需要合理进行设置
怎么解决redis缓存穿透
布隆过滤器就是判断数据存不存在于这个集合之中,
针对恶意的key进行数据的查询的时候,如果redis中没有命中,且布隆过滤器中查询该值不存在,就直接返回null,不在去走数据库,防止恶意请求的大量涌入