自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

不惑

出自《论语·为政》中的“四十而不惑”,这是孔子所说的一句话,意思是人到了四十岁,就不会因为无知而困惑。后来,“不惑”也用来形容一个人在某个领域或某方面经验丰富,能够清晰、明智地处理问题。

  • 博客(401)
  • 资源 (6)
  • 收藏
  • 关注

原创 弹窗大战15年祭,零信任iOA的枪口,正对准哪吒的方向盘

昔日网络安全江湖,刀光剑影,杀毒软件们内卷成风。而今,iOA以极简之道破局,让企业不再提心吊胆,IT管理员也能安心摸鱼。正所谓:"昔日杀毒拼刀枪,今朝防护靠智商。若问哪家最省心?iOA前笑苍茫!"——《甲辰年·终端安全新篇》(PS:某0、某山粉丝勿喷,江湖切磋,点到为止!胜败乃常事,放下键盘,喝杯茶可好?)

2025-07-28 09:31:55 12741

原创 【源力觉醒 创作者计划】文心4.5系列模型开源的深远意义与思考

百度文心4.5大模型全面开源:AI生态迎来新变革 2025年6月,百度宣布文心4.5系列大模型开源,涵盖47B、3B混合专家模型及0.3B稠密模型,引发行业震动。开源模型不仅提供高性能(多项基准测试超越国际竞品),还简化了部署与微调流程,显著降低开发门槛。开发者可通过在线Playground、FastDeploy和ERNIEKit工具快速实现从创意到原型的转化。尽管存在滥用风险和性能质疑,但文心4.5在推理、多模态等任务中的优异表现,以及配套的合规措施,展现了国产AI的竞争力与生态潜力。开源大模型正推动行业

2025-07-07 14:49:47 1758

原创 CloudBase AI Toolkit 让我用“嘴”开发出的第一款网页游戏

我在写小说,它在写代码。整场开发我几乎没碰过 HTML 标签,也没写事件监听、样式布局这些“繁琐”部分。我只负责创意和故事——CloudBase AI Toolkit 帮我把它变成了现实。它记得我说过什么,理解我说的“修仙风格”,还能自己补全内容,生成对话、剧情、UI 和逻辑。用人类语言,也能“写出”一个完整的交互式网页游戏。CloudBase AI Toolkit 正在打破“代码门槛”,让创意落地变得更轻松。对我这种非专业开发者而言,它不是工具,更像是一个“懂创作、能理解、会实现”的神仙实习生。

2025-06-30 10:10:32 2147 1

原创 腾讯云RAG技术携手DeepSeek-R1/V3模型:落地低代码创新实践赋能普惠法律服务

正如德国法学家耶林所言:"法律需要为正义而斗争"。正是DeepSeek模型与法律知识引擎深度融合,使我们得以见证每个劳动争议咨询背后,是大模型对823个法律特征的精准分析;每份合规审查报告的产生,都承载着大模型对司法数据的深度解读。这或许AI时代对"努力让人民群众在每一个司法案件中感受到公平正义"的最佳技术注脚。腾讯云知识引擎通过"RAG+大模型+工作流"的技术,不仅实现了霍姆斯"经验沉淀"的数字化,更让罗翔教授"触手可及的正义"成为可量化的服务指标。

2025-02-24 08:30:20 2871 6

原创 通俗理解空洞卷积(Dilated Convolution)

本文介绍了空洞卷积(Dilated Convolution)的原理与应用。空洞卷积通过在标准卷积核中插入"空洞",在不增加参数量的情况下扩大感受野,解决了传统CNN需要堆叠多层才能获取大范围上下文信息的问题。文章详细阐述了空洞卷积的数学原理、计算示例和核心优势,包括扩大感受野、保持空间分辨率、计算高效等特性。以DeepLab系列模型为例,展示了空洞卷积在语义分割等任务中的成功应用,同时也分析了其潜在问题及改进方法。作为一种优雅的深度学习创新,空洞卷积为处理复杂视觉任务提供了高效解决方案,

2026-01-08 08:46:22 488

原创 通俗理解轻量级网络:MobileNet

摘要:MobileNet是Google开发的轻量级神经网络系列,专为移动和嵌入式设备设计。V1(2017)首创深度可分离卷积,大幅降低计算量;V2(2018)引入倒置残差和线性瓶颈,提升准确率;V3(2019)结合AutoML优化架构,采用h-swish激活和注意力机制,实现最佳性能。该系列在保持高效的同时(V3-L仅550万参数、75.2%准确率),广泛应用于手机APP、无人机视觉等领域,推动了边缘AI的发展。通过架构创新,MobileNet成功平衡了模型性能与设备资源限制。

2026-01-08 08:45:59 339

原创 通俗理解深度可分离卷积

深度可分离卷积:轻量化CNN的巧妙设计 卷积神经网络(CNN)在计算机视觉领域表现出色,但传统标准卷积存在计算量大、参数量多的问题,难以在移动设备上部署。深度可分离卷积通过将标准卷积分解为深度卷积和点卷积两个步骤,实现了显著的效率提升:先对每个输入通道独立进行空间卷积,再用1×1卷积进行通道信息融合。这种设计在MobileNet和Xception等轻量化模型中广泛应用,相比标准卷积可减少8-9倍的计算量,同时保持相近的精度表现。尽管在通道相关性强的任务中可能损失部分信息,但结合批归一化和ReLU激活后仍能取

2026-01-07 08:52:35 944

原创 通俗理解密集连接网络(DenseNet)

在深度学习的世界里,卷积神经网络(CNN)就像是图像识别领域的超级英雄。从最早的LeNet到后来的AlexNet、VGGNet,再到ResNet,这些网络模型一次次刷新了我们在计算机视觉任务上的认知。但今天我们要聊的主角是DenseNet,全称Densely Connected Convolutional Networks,也就是密集连接卷积网络。

2026-01-07 08:52:05 798

原创 通俗理解残差网络(ResNet)

本文介绍了残差网络(ResNet)在深度学习中的重要作用。ResNet通过引入残差块和捷径连接,有效解决了深层神经网络中的梯度消失问题,使得网络可以训练到1000多层。相比传统网络,ResNet更容易优化、泛化能力更强且计算效率更高,在图像分类、目标检测等计算机视觉任务中表现优异。文章还简述了ResNet的架构、原理及实现,并指出其局限性和改进方向。ResNet的创新设计思想对深度学习发展产生了深远影响。

2026-01-06 08:49:38 990

原创 通俗理解Inception网络

更酷的是,它的参数量只有VGGNet的1/12,却性能更强。而在众多CNN模型中,Inception网络就像一个聪明的高效工程师,它不只强大,还特别注重“节俭”——用更少的计算资源达到更好的效果。CNN通过层层过滤,提取特征,从边缘、纹理,到物体形状,最终识别出是什么。AlexNet有8层,VGG有19层,但层数增加,参数爆炸,容易过拟合和梯度消失。训练时,它们的损失加到总损失(权重0.3),帮助梯度传播,缓解梯度消失。:用一个小窗口(卷积核,比如3x3或5x5)在图像上滑动,计算加权和,生成特征图。

2026-01-06 08:48:58 851

原创 通俗理解经典CNN架构:VGGNet

VGGNet是牛津大学提出的经典卷积神经网络,以其简洁的3x3卷积核堆叠和深度结构著称。它在2014年ImageNet竞赛中表现出色,验证了网络深度对性能提升的重要性。VGGNet架构包含5个卷积块和3个全连接层,其中VGG-16和VGG-19是最常用变体。虽然参数庞大、计算密集,但VGGNet凭借高准确率和良好的可迁移性,在图像分类、目标检测等任务中广泛应用,并启发了后续深度网络设计。尽管存在计算效率低的缺点,它仍是深度学习发展史上的重要里程碑。

2026-01-06 08:48:45 828

原创 通俗理解经典CNN架构:AlexNet

AlexNet是深度学习发展史上的里程碑式模型,在2012年ImageNet竞赛中以15.3%的错误率夺冠,比第二名降低10个百分点。该模型由5个卷积层和3个全连接层组成,创新性地采用了ReLU激活函数、GPU并行训练、Dropout和数据增强等技术。AlexNet证明了深度神经网络在大规模图像识别中的有效性,开启了深度学习在计算机视觉领域的新时代。尽管存在参数量大、计算密集等局限性,但其核心思想为后续VGG、ResNet等模型奠定了基础,对AI发展产生深远影响。

2026-01-05 08:45:14 763

原创 从零开始后训练文生图大模型完全指南

文生图大模型能够根据文本描述生成高质量图像,训练方式主要分为预训练和后训练。预训练需要海量数据和计算资源,而后训练基于已有模型进行微调,成本更低。核心方法包括LoRA(参数高效微调)、DreamBooth(个性化定制)和ControlNet(精确控制生成)。训练环境建议使用8GB以上显存的GPU,搭建Python 3.10、PyTorch和Diffusers等软件环境。选择合适的基础模型如Stable Diffusion 1.5或SDXL是关键第一步。后训练技术可在少量数据和消费级硬件上实现专属模型的快速训

2026-01-05 08:44:57 1136

原创 通俗理解经典CNN架构:LeNet

本文介绍了卷积神经网络(CNN)的鼻祖LeNet的起源、架构和应用。LeNet由Yann LeCun在20世纪90年代开发,主要用于手写数字识别,其创新性的卷积层、池化层等设计奠定了现代CNN的基础。文章详细拆解了LeNet-5的7层结构,包括输入层、卷积层、池化层和全连接层的工作原理,并解释了前向传播和训练过程。尽管LeNet结构简单,参数仅6万个,但它在MNIST数据集上实现了不到1%的错误率。虽然现代网络更加复杂,但LeNet作为教学经典,仍是理解CNN核心概念的重要案例。

2026-01-05 08:44:21 1219

原创 通俗理解卷积核与特征图

这篇文章通俗易懂地介绍了卷积神经网络(CNN)中的两个核心概念:卷积核和特征图。卷积核是CNN中的"探测器",通过滑动扫描图像来提取特征;特征图则是这些特征的分布图。文章用生动的比喻和直观的图片说明,从图像基础知识讲起,详细解释了卷积操作的过程,展示了不同类型卷积核的作用,以及特征图在多层CNN中的演变。最后简要介绍了CNN的实际应用和一些高级概念。全文语言简洁明了,适合没有技术背景的读者理解CNN的基本工作原理。

2026-01-04 09:02:25 950

原创 通俗理解池化操作(Pooling)

池化操作是卷积神经网络中的关键组件,主要用于降维和特征提取。本文系统介绍了池化的基本概念、类型和工作原理,重点分析了最大池化和平均池化的特点及应用场景。最大池化通过选取局部最大值保留显著特征,适合分类任务;平均池化通过计算均值提供平滑效果,适合分割任务。文章还探讨了其他池化变体、优缺点及改进方法,并展示了池化在图像处理、医疗等领域的实际应用。作为深度学习的"隐形英雄",池化操作通过高效的下采样机制,大幅提升了模型的计算效率和泛化能力。理解池化原理有助于优化神经网络设计。

2026-01-04 08:56:56 853

原创 通俗理解卷积操作

卷积是一种广泛应用于信号处理、图像分析和深度学习的数学操作。本文从基础概念入手,首先介绍了一维卷积在音频处理和金融分析中的应用,然后重点讲解了二维卷积作为图像处理核心工具的原理,包括边缘检测、模糊和锐化等常见操作。文章深入探讨了卷积神经网络(CNN)的工作原理,以及卷积在深度学习中的关键作用。此外,还涵盖了步幅、填充、多通道等高级概念,并提供了Python实现的代码示例。最后指出了卷积操作的常见误区和计算复杂度等注意事项,为读者全面理解卷积操作及其应用提供了清晰指导。

2025-12-30 09:19:54 959

原创 通俗理解神经网络的反向传播

本文用通俗易懂的语言解释了神经网络中的反向传播算法。文章首先通过生活比喻引入概念,将反向传播比作教练指导球员调整动作的过程。随后介绍了神经网络的基本结构(输入层、隐藏层、输出层)和前向传播的计算流程。重点阐述了反向传播的原理:利用链式法则从输出层反向计算梯度,逐步调整各层权重以最小化损失函数。通过简单示例演示了具体计算步骤,并讨论了激活函数的作用及梯度消失问题。最后指出反向传播是现代深度学习的基础,虽然框架已实现自动计算,理解其原理对模型优化至关重要。全文避免复杂数学公式,配以生动比喻和图示,帮助读者掌握这

2025-12-30 09:11:32 779

原创 从零开始后训练文生图大模型完全指南

文生图大模型训练指南:从零到精通的实践路径 本文系统介绍了文生图大模型训练的核心技术与实践方法。重点解析了预训练与后训练的本质区别,指出后训练是基于已有模型进行高效微调的技术路径。文章深入剖析了扩散模型的工作原理,并全面梳理了五大后训练技术体系,包括全参数微调、参数高效微调(LoRA等)、个性化定制(DreamBooth)、条件控制训练和对齐优化技术。 针对不同训练需求,详细提供了硬件配置建议和软件环境搭建指南,比较了主流开源模型的特性差异。本文为开发者提供了从理论到实践的完整技术路线图,特别强调LoRA等

2025-12-29 14:51:50 992

原创 如果2025的我是强化学习,那最终奖励会是什么?

《2025年终总结:像强化学习智能体一样寻找人生奖励》摘要: 本文以强化学习为喻,反思作者2025年的成长历程。这一年作者尝试了写作、自媒体、比赛、活动策划、大模型学习等多个领域,却陷入"奖励困惑":公众号流量暴跌、比赛失误连连、学习成果难以变现。通过强化学习中"探索与利用"、"稀疏奖励"等概念的对照,作者发现问题的核心在于奖励函数设定混乱——同时追逐太多外部指标,却忽视了内心真正的成长需求。文章最终提出,人生真正的奖励或许不在于即时反馈,而在于通

2025-12-29 10:52:40 512 1

原创 通俗理解神经网络的前向传播

本文介绍了神经网络的前向传播机制,从生物神经元到人工神经网络的演变过程。文章通过生活化的比喻和直观图示,解释了单个神经元如何通过权重、偏置和激活函数处理输入信号,并逐步扩展到多层网络的前向传播计算流程。文中包含两个具体示例(房价预测和图像分类)来说明前向传播的实际应用,最后提供了Python代码实现。前向传播作为神经网络的基础计算过程,为后续深度学习模型训练和推理提供了重要支撑。

2025-12-29 10:44:16 1048

原创 通俗理解全连接层

本文系统介绍了神经网络中的全连接层(Fully Connected Layer)。首先从人工神经元的基本原理出发,解释其数学结构和工作机制;然后详细阐述全连接层的定义、结构及其在矩阵运算中的实现方式;接着分析全连接层在深度学习各领域的典型应用,包括MLP、CNN和Transformer等架构;最后客观评价其优缺点,并与卷积层进行对比。文章指出,尽管全连接层存在参数爆炸等问题,但通过Dropout、正则化等技术优化后,它仍然是神经网络中不可或缺的基础组件。全文采用通俗易懂的语言和图示,帮助读者建立对全连接层的

2025-12-29 09:43:26 1389

原创 通俗理解什么是神经网络

神经网络是人工智能的核心技术,其灵感来源于人类大脑神经元结构。文章通俗易懂地介绍了神经网络的基本原理:从人工神经元(输入、权重、激活函数)到网络结构(输入层、隐藏层、输出层),以及学习过程(前向传播和反向传播)。还列举了CNN、RNN等常见网络类型及其在图像识别、自然语言处理等领域的应用。虽然神经网络功能强大,但仍面临数据需求大、计算成本高、可解释性差等挑战。未来,神经网络将朝着更智能、更高效的方向发展,持续推动AI技术进步。

2025-12-29 09:24:09 715

原创 通俗理解多层感知机(MLP)

本文通俗讲解多层感知机(MLP)的原理与应用。MLP作为基础神经网络,模拟人脑神经元结构,由输入层、隐藏层和输出层组成。文章从生物神经元类比入手,阐述MLP如何通过加权求和与激活函数实现非线性决策;详细解析其前向传播和反向传播机制,以及Sigmoid、ReLU等激活函数的作用;并以MNIST手写识别为例展示MLP的实际应用。尽管MLP存在计算密集、黑箱等局限,但作为深度学习基石,其在金融、医疗等领域仍有广泛价值。全文通过直观图解和实例,帮助读者理解这一重要AI模型的核心思想。

2025-12-26 13:06:25 493

原创 通俗理解感知机(Perceptron)

感知机是人工智能领域的奠基性概念,由心理学家罗森布拉特于1957年提出,模拟生物神经元工作原理实现决策功能。文章通过生活化比喻和直观图示,系统介绍了感知机的生物灵感、数学结构(输入权重求和+激活函数)和学习算法(迭代调整权重)。重点分析了其局限性:仅能处理线性可分问题(如无法解决XOR逻辑),这推动了多层感知机和深度学习的发展。作为现代神经网络的前身,感知机虽简单却蕴含机器学习核心思想,是理解AI演变的理想起点。文章最后建议读者通过Python实践加深理解。

2025-12-26 11:58:22 927

原创 通俗理解什么是神经网络

神经网络是人工智能的核心技术,模仿人脑神经元结构进行信息处理。文章从生物神经元的工作原理出发,解释人工神经元如何通过加权输入、激活函数等数学建模实现智能决策。详细介绍了神经网络的基本结构(输入层、隐藏层、输出层)及其工作流程(前向传播与反向传播),并阐述了常见的激活函数(如Sigmoid、ReLU)及其作用。文章还概述了卷积神经网络(CNN)和循环神经网络(RNN)等典型变体及其应用场景,包括图像识别、自然语言处理、医疗诊断等领域。最后展望了神经网络与量子计算等前沿技术的结合前景,为读者提供了对这一重要技术

2025-12-26 11:54:15 693

原创 Windows系统下安装Conda详细图文教程

本文介绍了在Windows系统下安装Miniconda的详细步骤。Miniconda是一个轻量级的Python包和环境管理工具,相比Anaconda占用更少空间。安装过程包括下载安装包、选择安装路径、设置环境变量等关键步骤。安装完成后,可以通过Anaconda Prompt验证安装,并配置国内镜像源以加速下载。文章还介绍了conda的核心功能——虚拟环境管理,包括创建、激活、安装包等常用操作,以及常见问题的解决方法。通过Miniconda可以高效管理Python开发环境,特别适合数据科学和AI领域的使用者。

2025-12-24 19:59:41 1009

原创 Windows本地部署开源大模型保姆级教程(2025最新版)

2025年开源大语言模型(LLM)发展成熟,本地部署具有隐私保护、零费用等优势。本文提供Windows系统部署开源大模型的三种方法:1)Ollama最简单,适合新手5分钟上手;2)LM Studio纯图形化界面,一站式操作;3)text-generation-webui功能最强大但安装稍复杂。教程涵盖硬件要求、NVIDIA驱动安装等准备工作,并详细说明每种方法的安装步骤和使用技巧,推荐多款2025年热门模型。本地部署可实现完全离线的AI体验,适合不同技术水平的用户。

2025-12-24 16:10:17 626

原创 Windows安装Python

Python是一种广泛使用的编程语言,以其简洁的语法和强大的功能而闻名。它被应用于数据分析、人工智能、Web开发、自动化脚本等领域。对于Windows用户来说,安装Python是入门编程的第一步。本文将详细指导您如何在Windows操作系统上安装Python,包括下载、安装、验证以及一些高级配置。我们会一步步讲解,确保即使是初学者也能轻松上手。安装Python的过程相对简单,通常只需几分钟,但正确配置可以避免后续问题。首先,为什么要在Windows上安装Python?

2025-12-23 17:28:02 719

原创 Windows安装Java

Java是一种广泛使用的编程语言和计算平台,由Oracle公司维护。它支持跨平台开发,许多应用程序、游戏和网站都需要Java运行环境(JRE)或开发工具包(JDK)。在Windows操作系统上安装Java相对简单,但需要注意版本选择、下载来源和环境配置。本文将详细指导您如何在Windows上安装Java,包括Oracle JDK和OpenJDK两种流行选项。我们将一步步说明过程,并配以图文说明,确保您能顺利完成安装。

2025-12-23 17:25:13 883

原创 Windows安装PyCharm

在当今的编程世界中,选择一个合适的集成开发环境(IDE)对于提升开发效率至关重要。PyCharm,由JetBrains公司开发,是专为Python编程设计的强大IDE。它支持数据科学、Web开发、脚本编写等多种场景,深受开发者喜爱。无论是初学者还是资深程序员,PyCharm都能提供智能代码补全、调试工具、版本控制集成以及插件扩展等功能,帮助用户更高效地编写和维护代码。本文将以Windows操作系统为重点,详细指导您如何安装PyCharm。我们将从系统要求开始,逐步讲解下载、安装、配置以及常见问题解决。PyC

2025-12-23 09:40:00 968

原创 Windows部署大模型

摘要: 本文详细介绍了在Windows系统上部署大语言模型(LLM)的完整流程。从环境准备(系统更新、Python安装、CUDA配置)到框架选择(PyTorch、TensorFlow、Hugging Face),再到模型下载与部署(本地推理/API服务),逐步指导开发者完成配置。重点涵盖GPU加速、量化优化等性能提升技巧,并提供常见问题解决方案。通过可视化界面截图和代码示例,帮助用户克服Windows平台部署LLM的挑战,实现高效本地化运行,避免云服务依赖。全文约需20分钟阅读,适合不同水平的开发者实践。

2025-12-22 10:14:33 1337

原创 通俗理解卷积神经网络

本文通俗介绍了卷积神经网络(CNN)的工作原理及其重要性。CNN通过卷积层、激活函数和池化层等结构,模拟人脑处理图像的方式,有效提取特征并进行分类。相比传统神经网络,CNN采用局部连接和参数共享,大幅减少计算量。文章还介绍了经典CNN模型如LeNet-5和AlexNet,以及CNN在图像识别、医疗诊断等领域的广泛应用。尽管CNN存在计算密集和解释性差等挑战,但其在人工智能领域的核心地位不可替代。通过简单示例,读者可以快速理解CNN的基本概念和工作流程。

2025-12-22 09:11:37 1681

原创 CNN:通俗理解卷积神经网络

卷积神经网络(CNN)是一种专为图像处理设计的深度学习模型,模仿人类视觉系统通过局部感知和参数共享高效提取特征。其核心组件包括卷积层(局部特征提取)、激活函数(引入非线性)、池化层(降维)和全连接层(分类)。经典架构如LeNet-5和AlexNet展示了CNN的发展历程。CNN广泛应用于图像分类、物体检测、医疗诊断等领域,具有自动特征提取和高效参数的优势,但也面临数据需求大、解释性差等局限。未来,CNN将与Transformer等新技术结合继续推动计算机视觉发展。

2025-12-19 16:10:26 869

原创 Kurator 分布式云原生平台从入门到实战教程

摘要 Kurator是华为云开源的分布式云原生平台,支持多云、多集群和云边协同管理。它整合Kubernetes、Karmada、KubeEdge等主流技术,通过"舰队"概念实现统一治理、应用分发和监控。Kurator解决了多云环境下集群孤岛、运维复杂等问题,支持AWS、本地数据中心和边缘场景。安装过程包括部署Cert-Manager和Cluster Operator,支持Helm、源码或发布包三种方式。平台提供集群生命周期管理、高可用控制平面和弹性扩展能力,通过声明式API简化运维,适合

2025-12-19 08:56:05 3092

原创 在 Docker 中运行 Java JAR 包实战教程

本文详细介绍了使用Docker容器化Java应用的全流程。首先对比了传统部署与Docker部署的优势,包括环境一致性、隔离性和快速部署。然后逐步演示了从准备Spring Boot项目、Maven打包配置,到编写优化版Dockerfile(采用多阶段构建和安全最佳实践)。最后提供了基础版和推荐版的Dockerfile示例,涵盖工作目录设置、非root用户创建、健康检查等关键配置。整个指南结构清晰,配有可视化目录和代码片段,适合开发者快速上手Java应用的Docker化部署。

2025-12-18 11:35:00 563

原创 Windows 安装 Docker 和 Docker Compose 完整教程

本文详细介绍了在Windows系统上安装和配置Docker Desktop的完整流程。内容包括系统环境要求(Win10/11专业版/家庭版)、安装前准备(启用虚拟化技术、安装WSL2)、Docker Desktop的下载安装步骤、配置优化(镜像加速、资源分配等),以及通过运行测试容器验证安装。此外还提供了Docker Compose使用指南和常见问题解决方法,帮助用户快速搭建Docker开发环境并解决可能遇到的配置问题。

2025-12-18 11:03:53 1810

原创 别找了,本地部署大模型工具全面推荐指南

摘要: 本文介绍了当前主流的本地部署大语言模型(LLM)工具,分为入门级、专业级和知识增强三类。入门级工具如Ollama、LM Studio和Jan,提供简单易用的图形界面或命令行操作,适合个人开发者和小型项目。专业级框架如llama.cpp、vLLM和TGI,专注于高性能推理和生产环境部署,支持多GPU和量化技术。知识增强工具如Anything LLM和Open WebUI,集成RAG功能,支持文档问答和知识库管理。这些工具帮助用户根据需求在本地环境中高效部署AI模型,兼顾隐私、成本和定制化需求。

2025-12-17 13:32:12 1440

原创 炸裂!从纯噪声到神级画作,只需几秒?扩散模型 + DALL·E 的黑魔法,全在这里揭秘了!

本文揭秘了AI绘画神器DALL·E背后的核心技术——扩散模型(Diffusion Models)。该模型通过正向加噪和逆向去噪的过程,能从纯噪声生成高质量图像。OpenAI的DALL·E系列不断进化,从最初的Transformer架构到基于扩散模型的DALL·E 2,再到集成ChatGPT的DALL·E 3,实现了文本到图像的精准转换,支持复杂描述、高清分辨率和多种编辑功能。扩散模型已成为生成式AI的主流技术,推动Stable Diffusion、Midjourney等工具的发展,让普通人也能轻松创作专业级

2025-12-16 10:18:40 372

原创 AI黑科技大揭秘,了解这些深度学习模型架构,超越99%的人都不知道的惊人秘密

本文概述了深度学习的几种经典架构及其应用场景。多层感知机(MLP)是最基础的神经网络,适用于小规模数据;卷积神经网络(CNN)擅长图像处理,通过卷积核提取局部特征;循环神经网络(RNN)及其变体LSTM适合序列数据,具有记忆功能;Transformer通过自注意力机制实现高效并行计算,广泛应用于自然语言处理;生成对抗网络(GAN)通过生成器和判别器的对抗训练生成逼真数据。此外,还介绍了图神经网络(GNN)、自编码器和胶囊网络等特色架构。这些模型各有所长,常被组合使用以解决复杂问题。

2025-12-15 11:02:20 901

Java基础教程

适用于java入门,基础薄弱,易上手,容易理解

2013-09-29

[itpub.net]Oracle日常维护手册

Oracle日常维护手册

2018-11-20

[itpub.net]ORACLE备份与恢复(包括RMAN) by yangtingkun BLOG(精)

[itpub.net]ORACLE备份与恢复(包括RMAN) by yangtingkun BLOG(精)

2018-11-20

Java Eclipse反编译工具

Eclipse反编译工具附说明,确认好用。

2014-11-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除