论文 | PRCA: 通过可插拔奖励驱动的上下文适配器拟合用于检索问答的黑盒大语言模型

        论文全称:PRCA: Fitting Black-Box Large Language Models for Retrieval Question
Answering via Pluggable Reward-Driven Contextual Adapter

        核心问题:如何在检索增强式问答(ReQA)任务中,利用大型语言模型(LLMs)作为生成器,同时避免对其进行耗时的微调。

        解决方案:提出了一种可训练的插件式奖励驱动上下文适配器(PRCA),它位于检索器和生成器之间,以黑盒方式工作。

PRCA优势:

  1. 黑盒 LLMs 集成: PRCA 允许将 LLMs 作为黑盒集成到 ReQA 框架中,无需微调,也适用于闭源模型。
  2. 鲁棒性: PRCA 兼容各种检索器和生成器,因为它保持了检索器和生成器的冻结状态。
  3. 效率: PRCA 通过减少输入生成器的文本长度来提高框架的效率,并可以适应不同的检索语料库。

将LLM作为黑盒模型:

                将 LLM 作为黑盒模型,意味着我们将其视为一个不可见的、无法直接修改的组件,只关注其输入和输出。在这种情况下,我们无法了解 LLM 内部的结构和参数,也无法对其进行直接修改或优化。

原因:

  1. LLM 参数规模庞大:例如 GPT-3 拥有 1750 亿参数,进行微调需要大量的计算资源和时间。
  2. LLM 开源情况:部分 LLM 是闭源的,无法获取其内部结构和参数。
  3. LLM 部署复杂性: 将 LLM 部署到生产环境中可能面临各种挑战,例如资源分配、模型更新等。

例子:

  1. API 调用: 通过 API 调用 LLM,只关注输入和输出,无需了解其内部结构。
  2. 模型集成:将 LLM 集成到其他模型中,只使用其预测功能,无需修改其参数。

利与弊:

        利:降低训练成本、适用闭源模型、简化部署过程、提高模型泛化能力、提高开发效率。

        弊:无法理解 LLM 的决策过程、难以进行模型优化、难以解释模型的预测结果

PRCA工作原理:

1.上下文提取阶段(相当于是精炼上下文)

  • PRCA 从检索器获取查询和 Top-K 相关文档,然后通过监督学习训练,学习如何从这些文档中提取信息丰富的上下文。
  • 目标是最小化提取的上下文与真实上下文之间的差异。

2.奖励驱动阶段

  • 将生成器视为奖励模型,根据生成答案与真实答案之间的 ROUGE-L 分数计算奖励信号。
  • 通过强化学习优化 PRCA 的参数,目标是最大化生成器的奖励,并保持与原始参数的相似性。
  • 为了解决黑盒生成器带来的挑战,PRCA 使用了一种策略来估计每个时间步的奖励 Rt,从而避免频繁调用生成器 API。
  • PRCA 使用近端策略优化(PPO)算法进行参数更新。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值