ERC论文阅读(05)--cosmic论文阅读笔记(2024-11-05) 使用常识知识来解决ERC任务。提出了一个新的框架COSMIC,包含常识的不同元素,如心理状态、事件和因果关系并在此基础上学习对话中的说话者间的交互。目前最先进的方法经常在上下文传播、情绪偏移检查、区分情绪类别等方面遇到困难,通过学习不同的常识表征,COSMIC解决了这些挑战并在4个不同的基准数据集上取得了新的SOTA结果。
ERC论文阅读(02)--SAC;-LSTM论文阅读笔记 这篇论文是研究ERC任务的论文,发表在2023年ACL上。作者利用对比学习和对抗训练策略来完成ERC任务,采用LSTM作为基础模型,在基础模型上使用对抗训练的方法和对比学习的方法来改进ERC任务效果,是当时第一个将对抗训练引入ERC任务的工作,该项工作基于文本模态,在常用的数据集MELD、iemocap、emoryNLP上取得了SOTA的效果。
ERC论文阅读(01)--BiosERC论文阅读笔记 这篇论文是研究ERC任务的论文,作者提出了微调LLM和训练了自己的基于bert的预训练模型。中心思想是将对话中说话者的性格特征注入模型中,实验证明了其思想的有效性,在常用的数据集MELD、iemocap、emoryNLP上取得了SOTA的效果。
python学习记录 python其实本科的时候系统学习过基础语法,不过后来一直没有用过,忘记了。研一的时候又重新看课程学习了一遍基础语法,不过最近在看论文代码的时候发现很多地方我还是混淆了,所以昨天和前天系统回顾了一遍基础语法(国庆长假正是弯道超车的好时机啊!)。
比亚迪技术面试(测试、测开) 这部分就是我的自我介绍了,我说了一下我大概的情况,主要是介绍了我的项目经历、实习经历巴拉巴拉。因为我自我介绍里面说了自己之前有在工业互联网的实习经历,项目主要说的是自己的开发经历,然后面试官打断了我跟我介绍了一下他那里的岗位,问我能不能接受接受地理位置和工作岗位,工作地点是在深圳,然后工作岗位是测试和测试开发。(本无offfer秋招人只能疯狂表示自己可以接受)我的项目就是那几个烂大街的项目。
NLP经典论文研读--xlnet论文代码复现记录 xlnet这个模型还是相当复杂的,我看了很长一段时间也还是有很多地方没有搞明白,最后又在网上搜了很多大佬写的相关博客,才算是大致弄明白了,想了解xlnet的原理,请参考原论文,这里推荐一位大佬写的博客,写得非常清楚明白,也解决了我的很多困惑。在这里,我重点讲解一下xlnet的代码实现,我这个代码是注:这代码里面没有说实验配置,但是我自己的实验环境是cuda11.3 ,经过实验可以正常运行,我的实验配置供参考,如下:python:3.6。
NLP经典论文研读--transformer-XL论文源码难点记录 transformerXL论文源码研读,这篇论文我看了差不多快10天,555~主要我确实太菜了,代码也看不明白,花了好久的时间才勉强啃下来。现在来记录一下看这篇论文的一些想法。
动手学深度学习加载数据集错误:FashionMNIST md,太难了下载raw里面的4个压缩文件,不用解压使用网友的代码读取压缩文件加载正确如图:更改读取代码:import osimport sys若佬有更好的方法,欢迎留言。
navicat右边显示无连接怎么办 救命,今天在安装完navicat测试连接的时候发现右边死活是灰色,在网上找个半小时,才解决,原来只要双击一下设置的连接就可以了,好想去撞墙啊~~参考:https://blog.csdn.net/weixin_48576892/article/details/129637232。
李宏毅机器学习2023课程记录(1)--课程介绍 总结:第一节课就是讲解这门课的一些内容、作业规则、评分规则、课程内容等;然后,老师说旁听也可以上传作业到kaggle,但是助教不会批改旁听生的作业(哈哈哈,这不是很正常莫):这门课虽然叫做机器学习,但是李宏毅老师讲课主要以深度学习的技术,特别是最新的深度学习技术进展为主。在这里,记录我最近听的李宏毅老师的机器学习课程的一些笔记和感想,进行归纳总结同时方便后续复习回顾。:本内容完全根据本人听课的心得体会~下面是我在B站上面听课的几张截图。:2023年12月16日。:课程介绍、作业介绍、
论文阅读笔记(12月15)--DialogXL 本文介绍了我们在使用预训练语言模型进行会话情感识别( ERC )方面的开创性工作。与常规文档不同,会话话语交替出现于不同的参与方,在以往的工作中通常被组织成层级结构。这样的结构不利于XLNet等预训练语言模型的应用。为了解决这个问题,我们提出了一个一体式的XLNet模型,即DialogXL,它具有增强的内存来存储更长的历史上下文和对话感知的自注意力来处理多方结构。具体来说,为了更好地对会话数据进行建模,我们首先将XLNet的递归机制从segment-level修改为utterance-level。其次。
使用bash文件运行的python深度学习项目如何调试 因为我是第一次调试这种用bash文件运行的项目,故记录以备以后查看。我要运行的bash文件为:在终端运行项目的话,命令是:bash exp_meld.sh。
Hierarchical Dialogue Understanding with Special Tokens and Turn-level Attention代码复现记录 我没有完全按照作者在readme里面说的,因为我第一次装了那个出了很多bug,我现在也不知道是什么原因,就换了一些版本,总算是跑通了。如regex,tqdm等,这些没有依赖版本的要求的包,我就是直接在创建的虚拟环境里面pip install 安装的。其实呢,我还是有很多地方不清楚,如果有大佬路过,恳请指点一二,不要吝惜您的赐教,在此拜谢~目前只是跑通了,具体的逻辑细节,我还要再看一下。在运行这个命令的时候,有几点细节要注意。
复现论文代码的时候老是遇到需要安装各种不同版本的cuda的问题 然后运行 sh cudaxxxxx.run(就是你下载的那个文件名),由于我不是管理员账号,所以不要sudo,这里要安装在自己账号的路径下面,不然安装不了。参考的博客:https://blog.csdn.net/qq_41917697/article/details/114437924。如图,建立后,又有cudal1,图中浅蓝色为cuda,表示是软链接(看网友说的,我不敢保证一定是这个意思)根据网友的说法,参考:https://www.zhihu.com/question/622711856。
看transformer源代码时候遇到的问题(ONMT) 这个文件的介绍网友已经写得很仔细了,我就不搬运了,参考:https://zhuanlan.zhihu.com/p/433176170。这里目录也太复杂了,本菜鸟实在不明白每个部分是干啥的,有大佬路过愿意指点一二的话,本人感激不尽。这个我也不太懂,救命,我项目都没怎么跑过呀,研一导师放养过得可快乐了,现在啥也不会。其实我之前看的源代码是另一个版本,这里也贴在这里,我刚刚克隆下来,还没有仔细看。大佬路过指点一下,感激不尽!我放弃了,这个源代码对我来说太复杂了,我决定先看看哈佛团队的。
记录创建虚拟环境和在虚拟环境中安装pytorch的过程 这里版本要根据自己的实际情况来确定。参考博客:https://blog.csdn.net/yup1212/article/details/124277058。每次复现论文都要创建新的环境,安装对应版本的pytorch等,每次都要到处找教程,太麻烦了,所以记下来。conda env list(展示有哪些虚拟环境)