数据结构--并查集

并查集

并查集是一种非常精致而且实用的数据结构;它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子树,求最小生成数和求最近公共祖先等.

并查集的主要操作有:

1.初始化(init)

2.查询(find)

3.合并(union)

假设有编号为1,2,3,4…,n的n个元素,我们用一个数组 fa[ ] 来存储每个元素的父节点,我们先将它们的父节点设为自己.

// 并查集
public class UnionFindSets {

    int[] fa;

    //1.初始化
    public void init(int n) {
        for (int i = 1; i <= n; i++) {
            this.fa[i] = i;
        }
    }

    //2.查询
    //找到i的祖先直接返回,未进行路径压缩
    public int find(int i) {

        if (fa[i] == i) { //递归出口,当到达了祖先位置,就返回祖先;
            return i;
        } else {
            return find(fa[i]); //不断往上查找祖先;
        }
    }

    //3.合并
    public void unionn(int i, int j) {
        int i_fa = find(i);
        int j_fa = find(j);
        fa[i_fa] = j_fa;
    }

}

路径压缩

//查询
//路径压缩
public int find(int i) {

        if (fa[i] == i) { 
            return i;
        } else {
            fa[i] =  find(fa[i]); //该步进行了路径压缩
            return fa[i];  //这次不返回它的祖先,直接返回它的父节点
        }
    }

典例实践

例子: 现在有若干家族图谱关系,给出了一些亲戚关系,如Marry和Tom是亲戚,Tom和Ben是亲戚等等,从这些信息中,你可以推出Marry和Ben是亲戚,请写一个程序,对于我们的关于亲戚关系的提问,以最快的速度给出答案.

[输入格式]

第一部分是以N,M开始,N为人数(1<=N<=20000),这些人的编号为1,2,3,...,N;下面有M行(1<=M<=1000000)
每行有两个数a,b 表示a和b是亲戚.

第二部分是以Q开始,以下Q行有Q个询问(1<=Q<=1000000),每行为c,d;表示询问c和d是否为亲戚关系.

[输出格式]
对于询问c,d,输出一行,若c,d为亲戚,则输出"YES",否则输出"NO";

[输入样例]          [输出样例]
 10 7
 2 4
 5 7
 1 3
 8 9
 1 2
 5 6
 2 3
 3
 3 4             YES
 7 10            NO
 8 9             YES

代码如下:

import java.util.Scanner;

// 并查集
public class UnionFindSets {

    static int[] fa;

    //1.初始化
    public static void init(int n) {
        fa = new int[n + 1];
        for (int i = 1; i <= n; i++) {
            fa[i] = i;
        }
    }

    //2.查询
    //路径压缩
    public static int find(int i) {

        if (fa[i] == i) {
            return i;
        } else {
            fa[i] = find(fa[i]); //该步进行了路径压缩
            return fa[i];  //父节点作为根节点,直接返回它的父节点
        }
    }

    //3.合并
    public static void unionn(int i, int j) {
        int i_fa = find(i);  //找到i的祖先
        int j_fa = find(j);  //找到j的祖先
        fa[i_fa] = j_fa;     //让i的祖先指向j的祖先,其实j的祖先指向i的祖先也是可以的
    }

    //并查集典例实践
    /*
    例子: 现在有若干家族图谱关系,给出了一些亲戚关系,如Marry和Tom是亲戚,Tom和Ben是亲戚等等,
    从这些信息中,你可以推出Marry和Ben是亲戚,请写一个程序,对于我们的关于亲戚关系的提问,以最快的
    速度给出答案.

    [输入格式]

    第一部分是以N,M开始,N为人数(1<=N<=20000),这些人的编号为1,2,3,...,N;下面有M行(1<=M<=1000000)
    每行有两个数a,b 表示a和b是亲戚.

    第二部分是以Q开始,以下Q行有Q个询问(1<=Q<=1000000),每行为c,d;表示询问c和d是否为亲戚关系.

    [输出格式]
    对于询问c,d,输出一行,若c,d为亲戚,则输出"YES",否则输出"NO";

    [输入样例]          [输出样例]
     10 7
     2 4
     5 7
     1 3
     8 9
     1 2
     5 6
     2 3
     3
     3 4             YES
     7 10            NO
     8 9             YES
     */
    public static void main(String[] args) {
        int n, m, x, y, q;
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        init(n);
        m = sc.nextInt();

        for (int i = 1; i <= m; i++) {
            x = sc.nextInt();
            y = sc.nextInt();
            unionn(x, y);
        }
        q = sc.nextInt();
        System.out.println();
        for (int i = 1; i <= q; i++) {
            x = sc.nextInt();
            y = sc.nextInt();
            if (find(x) == find(y)) {
                System.out.println("YES");
            } else {
                System.out.println("NO");
            }
        }
    }


}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值