FL文献阅读笔记
文章平均质量分 96
一颗无畏豆儿
时间才是答案
展开
-
联邦学习中的安全与隐私问题综述
联邦学习中的安全与隐私问题的详细综述原创 2024-05-27 22:21:02 · 559 阅读 · 0 评论 -
联邦学习中客户端-服务器攻击与防御综述
联邦学习 (FL) 提供去中心化机器学习 (ML) 功能,同时可以保护数据隐私。然而,这种架构带来了独特的安全挑战。客户端训练数据、本地模型、FL 通道、服务器端聚合参数和全局模型。我们进一步讨论为本地和全局模型量身定制的防御机制。通过我们的调查,我们阐明了FL 固有的漏洞,并提供了确保鲁棒性的对策的见解。我们的研究结果强调了双重重点策略的重要性,即解决客户端和服务器级别的安全问题。表 1 和表 2 高度概述了 FL 框架中的各种威胁和相应的对策。原创 2024-05-26 22:57:50 · 1137 阅读 · 0 评论 -
文献阅读-02(FedProx)
联邦学习基础算法文献阅读笔记,FedProx原创 2024-04-30 11:16:56 · 1042 阅读 · 0 评论 -
文献阅读-01(FedAvg)
联邦学习方面的文献阅读笔记原创 2024-04-27 18:03:55 · 932 阅读 · 0 评论