训练赛补题

A Count Task

队友过的

血泪教训:
子串 substrings:在严格的一段区间里连续
子序列Subsequence:从区间里挑出来的部分

会有爆掉的风险,所以决定以后在乘法、除法前都乘个ll

int num[maxn];

int main() {
	IOS;
	int t;
	cin >> t;
	while(t--){
		re(num);
		string s;
		cin >> s;
		ll len = s.size();
		ll cnt = 0, res = 1;
		for (int i = 1; i < len; ++i){
			if(s[i] == s[i - 1]){
				++res;
			}
			else {
				num[cnt++] = res;
				res = 1;
			}
		}
		num[cnt++] = res;
		ll ans = 0;
		for (int i = 0; i < cnt; ++i){
			ans += 1ll * num[i] * (num[i] + 1) / 2;
		}
		cout << ans << endl;
	}
	return 0;
}

The puzzle

信誓旦旦绝对是求逆序对,又不会求,准备摆了;队友说不要回回想着逆序对,队友过的;我有个很严重的问题就是喜欢套板子,什么都喜欢归个类再做,这点必须要改,这个想法在后面的CodeForces 437C中也让我吃了大亏。
!这题我做过,我说那么眼熟…还是不会
先学个逆序对,免得下次看什么都是逆序对…
换的是下标
目的:把这个数放在该放的位置上
1.

int a[maxn], b[maxn];
int main() {
	IOS;
	int t;
	cin >> t;
	while(t--){
		int n;
		re(a);
		re(b);
		cin >> n;
		for (int i = 1; i <= n; ++i){
			cin >> a[i];
			b[a[i]] = i;
		}
		int ans = 0;
		for(int i = 1; i <= n; ++i){
			if(a[i] != i){
				int t1 = a[i], t2 = b[i];
				swap(a[i], a[b[i]]);
				b[i] = i;
				b[t1] = t2;
				// for (int i = 1; i <= n; ++i){
				// 	cout << b[i] << " ";
				// }
				++ans;
			}
		}
		cout << ans << endl;
	}
	return 0;
}
while(t--){
		int n;
		re(a);
		re(b);
		cin >> n;
		for (int i = 1; i <= n; ++i){
			cin >> a[i];
			b[a[i]] = i;
		}
		int ans = 0;
		for(int i = 1; i <= n; ++i){
			while(b[i] != i){
				swap(b[i], b[b[i]]);
				++ans;
			}
		}
		cout << ans << endl;
	}

逆序对的数量

分治,归并,递归

#include <iostream>

using namespace std;

const int N = 1e6 + 10;
int cmp[N];
long long res = 0;
int q[N];
 
void merge_sort(int l, int r)
{
    if (l >= r) return;
    int mid = l + r >> 1;
    merge_sort(l, mid), merge_sort(mid + 1, r);
    int i = l, j = mid + 1,k = 0;

    while (i <= mid && j <= r){
        if (q[i] <= q[j]){
            cmp[k] = q[i];
            ++k, ++i;
        }
        else{
            res += mid - i + 1;
            cmp[k] = q[j];
            ++k, ++j;
        }
    }

    while (i <= mid) {
        cmp[k] = q[i];
        ++k, ++i;
    }
    while (j <= r) {
        cmp[k] = q[j];
        ++k, ++j;
    }
    
    for (int i = l, j = 0; i <= r; i ++, j ++) q[i] = cmp[j];

}

int main()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i ++) scanf("%d", &q[i]);
    merge_sort(0, n - 1);
    cout << res << endl;
    return 0;
}

Overflow

物理题
就离谱,我俩一直调,最后也不知道咋对的,反正就过了
cin还会t掉
题解

当时过的
		int n;
		scanf("%d", &n);
		double x, p;
		double m = 0,m1 = 0,m2 = 0;
		for (int i = 0; i < n; ++i) {
			scanf("%lf%lf", &x, &p);
			m1 = x * x * x;
			m2 = x * x * x * p;
			if(p >= 1)
				m += m1;
			else
				m += m2;
		}
		double s, h, v;
		scanf("%lf%lf%lf", &s, &h, &v);
		double ans = v / s;
		ans += m / s;
		if(ans >= h)
			ans = h;
		printf("%.2lf\n", ans);
	}
	return 0;
}

The Child and Toy

一看题,最小生成树!马上去写,写完调了几次不对,重新考虑了一下,嗯是拓扑排序,又去想拓扑排序;时间不够了,去调Overflow
下来一看,是贪心…
原来我一直没读懂题…我又跳读了orz
又理解成连接的边的权了
在这里插入图片描述
虽然但是还是想复杂了,考虑的是建图遍历每个点然后对比
简单:
可以知道的是要把每个节点拆下来需要把每个结点的边都拆完,所以这个算法是正确的

int n, m;
	cin >> n >> m;
	for (int i = 1; i <= n; ++i){
		cin >> a[i];
	}
	int ans = 0;
	for (int i = 0; i < m; ++i){
		int c, d;
		cin >> c >> d;
		ans += min(a[c], a[d]);
	}
	cout << ans;

建图对比:

vector<int> v[maxn];
int val[maxn];
int main() {
	IOS;
	// freopen("P1908_6.in","r",stdin);//读入数据
	// freopen("P1908.out","w",stdout); //输出数据
	int n, m;
	cin >> n >> m;
	for (int i = 1; i <= n; ++i){
		cin >> val[i];
	}
	int ans = 0;
	for (int i = 0; i < m; ++i){
		int a, b;
		cin >> a >> b;
		v[b].push_back(a);//b的父节点
	}
	for (int i = 1; i <= n; ++i){
		for(auto w : v[i]){
			ans += min(val[w], val[i]);
		}
	}
		cout << ans;
	return 0;
}

Sequence Pair Weight

i 前缀和 * 之前的长度
还是有点混

ll a[maxn];
map<ll, ll> mp;
ll val[maxn];

int main() {
	IOS;
	// freopen("P1908_6.in","r",stdin);//读入数据
	// freopen("P1908.out","w",stdout); //输出数据
	int t;
	cin >> t;
	while(t--){
		int n;
		mp.clear();
		cin >> n;
		ll ans = 0;
		for (int i = 1; i <= n; ++i){
			cin >> a[i];
		}
		for (int i = 1; i <= n; ++i){
			ans += mp[a[i]] * (n - i + 1);
			mp[a[i]] += i;
		}
		cout << ans << endl;
	}
	return 0;
}

其它题先放一下

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值