数学建模——拟合算法(第一部分)

本文介绍了拟合算法在数学建模中的重要性,区分了拟合与插值的区别,并深入探讨了最小二乘法,提供了一个通过最小二乘法求解线性函数的例子。同时,讨论了拟合优度R2作为评价标准,并推荐了Matlab曲线拟合工具箱及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

拟合算法在数学建模中起着举足轻重的作用,帮助进行数据预处理,模型选择等,本文就介绍了拟合算法的基础内容。

一、拟合算法——基本概念

拟合问题的目标是寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最优(最小化损失函数)。

二、拟合与插值的区别

1.拟合不需要曲线经过所有给定的点,拟合的结果是得到一条确定的曲线;而插值算法得到的多项式需要经过所有的样本点,但如果样本点太多,那么多项式的次数过高,会造成龙格现象。
2、拟合的思想:尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即可。(拟合的结果是得到一个确定的曲线)
3、在一般情况下,在数据样本较多时,使用拟合算法;在样本数据较少时,使用插值算法。
注:龙格现象:在计算方法中,有利用多项式对某一函数的近似逼近,计算相应的函数值。一般情况下,多项式的次数越多,需要的数据就越多,而预测也就越准确。插值次数越高,插值结果越偏离原函数的现象称为龙格现象。

三、最小二乘法的解释##

一个小例子
找出y和x之间的拟合曲线
在这里插入图片描述
第一步:画出散点图在这里插入图片描述

**第二步:根据散点图,确定拟合曲线。**假设我们的拟合曲线为y=kx+b
问题:当k和b取何值时,样本点和拟合曲线最为接近。
那么如何去定义这个接近呢?两种定义方法如下:

在这里插入图片描述
y^是拟合值。我们所要求的最小,就是要求拟合值与样本点的最短距离,从而确定k和b的值。在这里插入图片描述
第一种定义有绝对值,不容易求导,因此计算比较复杂。所以在实际中我们往往使用的是第二种定义,第二种定义也就是最小二乘的思想,也就是真实值和拟合值的所有的差值之和最小。
注:那么为什么不使用三次方,四次方呢?

在Python数学建模中,常用的算法有很多。其中一些常见的算法包括: 1. 线性回归:通过拟合一条直线来预测因变量和自变量之间的关系。 2. 最小二乘法:通过求解一个最小二乘问题来拟合数据。 3. 插值:通过已知数据点推导出在这些点之间的值。 4. 数值积分:通过数值方法计算函数的定积分。 5. 数值微分:通过数值方法计算函数的导数。 6. 非线性方程求解:通过数值方法求解无法用解析方法求解的方程。 7. 最优化问题:通过数值方法找到使目标函数取得最大或最小值的变量值。 8. 蒙特卡洛模拟:通过随机抽样的方法模拟实验结果,用于分析概率和统计问题。 Python中有许多第三方库可以用于实现这些算法,如NumPy、SciPy、Pandas、Matplotlib等。这些库提供了丰富的函数和方法来支持各种数学建模任务。通过使用这些库,你可以轻松地实现各种数学建模算法,并进行相应的数据分析和可视化。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [python interpolate_如何使用python完成数学建模常用算法](https://blog.csdn.net/weixin_39974958/article/details/110251180)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [【Python数学建模常用算法代码——蒙特卡洛模型】](https://blog.csdn.net/m0_56694518/article/details/130445996)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值